• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

HKU team identifies areas of top priority for deep-sea monitoring

Bioengineer by Bioengineer
February 7, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HKU marine ecologist and international team identifies areas of top priority for deep-sea monitoring and conservation through a survey of world’s leading deep-sea scientists

IMAGE

Credit: Lisa Levin


To classify the most important ecological and biological components of the deep sea, an international team including Professor Roberto Danovaro from Stazione Zoologica Anton Dohrn Napoli, Italy and Dr Moriaki Yasuhara from The Swire Institute of Marine Science (SWIMS) and School of Biological Sciences, The University of Hong Kong (HKU) sent a questionnaire-based survey to the world’s leading deep-sea scientists around the world. They then analysed the responses received from 112 scientists so as to create an expert-led list of priorities covering all aspects of deep-sea monitoring, conservation and management.

The results of the survey are presented in a Perspective in the leading journal Nature Ecology & Evolution, identifying key areas on which future conservation and management strategies should be focused. The article highlights priorities for monitoring, including large animals and habitat-forming species like deep-sea corals, and the impact of human activities such as mining on this vulnerable ecosystem.

The deep sea (defined here as below 200-metre depth) represents the largest, but least explored, type of environment, or biome, on Earth. It is home to many ecologically rare, unique and unknown species that are increasingly under multiple threats from industrial deep-sea mining, deep-sea fishing, climate change and plastic pollution.

The results of the survey indicated that habitat-forming species such as deep-sea corals were considered the most important area for conservation efforts. Large and medium-bodied organisms were considered the top priority for biodiversity monitoring in deep-sea habitats. Other equally significant factors for monitoring the deep-sea environment include habitat degradation and recovery as a measure of ecosystem health, and classification of the food-web structure of deep-sea communities to monitor the functioning of whole ecosystems. Identifying shifts in the depth ranges of different species was also a priority for monitoring responses to climate change.

“People tended to think deep sea is immune from human impacts or climate changes but scientific studies have been proving that it is untrue. Indeed, a better and standardised monitoring framework to prepare and manage for future is needed,” said Dr Yasuhara. South China Sea is, of course, not an exemption from the threats. SWIMS is an Asian hub of marine conservation and contributes to global deep-sea issues, for example, through this global collaborative paper and also through the ongoing 2nd World Ocean Assessment led by United Nations.

“The results are useful as a guideline for future deep-sea research, conservation and monitoring. The endorsements and adoptions of the proposed deep-sea essential ecological variables by industry, governments and non-governmental organisations would also help guide more sustainable management of oceans,” the authors concluded.

###

The paper:

‘Ecological variables for developing a global deep-ocean monitoring and conservation strategy’ in Nature Ecology & Evolution by Roberto Danovaro and collaborators including Moriaki Yasuhara.

Link of journal paper: https://www.nature.com/articles/s41559-019-1091-z

For more information about Dr Moriaki Yasuhara’s research, please visit:
https://moriakiyasuhara.com

Media Contact
Cindy Chan
[email protected]
852-391-75286

Original Source

https://www.hku.hk/press/news_detail_20619.html

Tags: BiologyEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Think you can outsmart an island fox? Think again!

August 21, 2025
blank

California’s dwarf Channel Island foxes have relatively larger brains than their bigger mainland gray fox cousins, revealing unique island-driven evolution

August 21, 2025

Why Do Some People Age Faster? Study Identifies Key Genes Involved

August 21, 2025

Tidal Forces Spur the Rise of Urban Civilization in Southern Mesopotamia

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Detects Neonatal Brain Lesions in China

Ozone Exposure Linked to Kawasaki Disease in Children

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.