• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

DNA extracted in museum samples can reveal genetic secrets

Bioengineer by Bioengineer
January 31, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DNA proteins extracted using a vortex fluidic device (VFD) could help answer important questions about extinct and ancient museum specimens

IMAGE

Credit: PLOS ONE


DNA in preserved museum specimens can allow scientists to explore the history of species and humanities impact on the ecosystem, but samples are typically preserved in formaldehyde which can damage DNA and make very difficult to recover.

Researchers have used a vortex fluidic device (VFD) to speed up DNA extraction from an American lobster preserved in formaldehyde – with the results providing a roadmap for exploring DNA from millions of valuable and even extinct species in museums worldwide.

Flinders PHD candidate Jessica Phillips says processing the preserved tissue from museum specimens in the VFD breaks apart proteins, releasing DNA which offers important historical genetic information.

“DNA extraction is achieved by processing the preserved tissue in an enzyme solution in the VFD. This enzyme breaks apart the proteins, releasing the DNA which can be analysed. By using the VFD we are able to accelerate this process from days to hours,” says Ms Phillips.

“For 150 years these samples have been preserved in formaldehyde which can damage the DNA and also make DNA difficult to recover. We used mechanical energy in a vortex fluidic device (VFD) to accelerate the extraction by processing the preserved tissue in an enzyme solution in the VFD.”

This work is a collaboration between University of California, Irvine (UCI), The Department of Organismic and Evolutionary Biology at Harvard University, and Flinders University.

Researchers say the results provide a roadmap for exploring DNA from millions of historical and even extinct species in museums worldwide.

Research Chair of Clean Technology Research Professor Colin Raston says the work builds on the body of about 80 papers that his research group has published about the vortex fluidic device.

“Applications of the VFD are rapidly expanding, but this has only been possibly by internal collaboration. The DNA extraction application involved collaboration with two other research laboratories headed by Professor Greg Weiss at UCI and Professor Peter Girguis at Harvard.”

“We have only scratched the surface about what is possible for this device,” says Professor Raston.”

###

Media Contact
Jessica Phillips
[email protected]
61-435-108-585

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0225807

Tags: Chemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/MicromachinesNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.