• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Physicists design ‘super-human’ red blood cells to deliver drugs to specific targets

Bioengineer by Bioengineer
January 16, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Georgia Kirkos, McMaster University

A team of physicists from McMaster University has developed a process to modify red blood cells so they can be used to distribute drugs throughout the body, which could specifically target infections or treat catastrophic diseases such as cancer or Alzheimer’s.

The modified red blood cells are designed to circulate in the body for several weeks at a time, seeking out specific targets including bacteria, tumours or organs.

The technology, described in the online edition of the journal Advanced Biosystems, solves a major problem with current drug delivery methods that use synthetic molecules and cannot reach specific targets or are rejected by the body.

“We call these super-human red blood cells. We think that they could work as the perfect stealth drug carriers which can outsmart our immune system,” explains Maikel Rheinstädter, a senior advisor on the study and professor in the Department of Physics & Astronomy at McMaster.

The researchers have developed a method to open up the red blood cell, modify its outer cell wall, and replace its contents with a drug molecule, which would then be injected back into the body.

The hybrid appears and behaves as a normal red blood cell, but has a sticky surface which can attach itself to bacteria, for example, open up and release antibiotics exactly where they are needed.

“We have combined synthetic material with biological material and created a new structure, which has never been done before in this way,” says Sebastian Himbert, lead author and a graduate student in the Department of Physics & Astronomy at McMaster.

“The entire process is very efficient and can be completed in one day in the lab,” he says.

Researchers believe this targeted delivery method could help to minimize dosages and therefore, potential side effects. This is particularly important for very potent drugs used in cancer and Alzheimer’s disease, and the treatment of infections of potentially resistant bacteria.

###

The work was done in collaboration with Harald Stöver, professor in the Department of Chemistry and Chemical Biology at McMaster, Janos Juhasz from the Juravinski Cancer Centre, and researchers at Saarland University in Germany.

A high res photo and video of researchers Maikel Rheinstädter and Sebastien Himbert can be found at this link: https://assets.adobe.com/public/907bc03f-19a0-4454-6dda-d1d10a57eb0a

Attention editors: A copy of the study can be found at the link below:

Adv. Biosys.2020, 1900185 “Hybrid erythrocyte liposomes: functionalized red blood cell membranes for molecule encapsulation”, Sebastian Himbert, Matthew J. Blacker, Alexander Kihm, Quinn Pauli, Adree Khondker, Kevin Yang, Sheilan Sinjari, Mitchell Johnson, Janos Juhasz, Christian Wagner, Harald D. H. Stöver and Maikel C. Rheinstädter

Adv. Biosys.2020, 1900185

https://doi.org/10.1002/adbi.201900185

Media Contact
Michelle Donovan
[email protected]
905-525-9140

Related Journal Article

http://dx.doi.org/10.1002/adbi.201900185

Tags: Atomic/Molecular/Particle PhysicsBiologyCell BiologyChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Brain Implants Offer Therapy Without Surgery

Revolutionary Brain Implants Offer Therapy Without Surgery

November 5, 2025
Exploring Histone Acetyltransferase Genes in Bursaphelenchus xylophilus

Exploring Histone Acetyltransferase Genes in Bursaphelenchus xylophilus

November 5, 2025

Proteomics and Metabolomics Reveal Milk Product Integrity

November 5, 2025

Can Targeting Cellular Aging Unlock New Treatments for Metabolic Diseases?

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graphene Oxide Boosts Perovskite Solar Cell Efficiency

Empowering Self-Advocacy in Young Adults with Disabilities

Micron-Scale Fiber Mapping Without Sample Prep

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.