• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Galactic gamma-ray sources reveal birthplaces of high-energy particles

Bioengineer by Bioengineer
January 14, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers with the joint US-Mexico-European HAWC Observatory have identified a host of galactic sources of super-high-energy gamma rays

IMAGE

Credit: Los Alamos National Laboratory


Nine sources of extremely high-energy gamma rays comprise a new catalog compiled by researchers with the High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. All produce gamma rays with energies over 56 trillion electron volts (TeV) and three emit gamma rays extending to 100 TeV and beyond, making these the highest-energy sources ever observed in our galaxy. The catalog helps to explain where the particles originate and how they are accelerated to such extremes.

“The Earth is constantly being bombarded with charged particles called cosmic rays, but because they are charged, they bend in magnetic fields and don’t point back to their sources. We rely on gamma rays, which are produced close to the sources of the cosmic rays, to narrow down their origins,” said Kelly Malone, an astrophysicist in the Neutron Science and Technology group at Los Alamos National Laboratory and a member of the HAWC scientific collaboration. “There are still many unanswered questions about cosmic-ray origins and acceleration. High energy gamma rays are produced near cosmic-ray sites and can be used to probe cosmic-ray acceleration. However, there is some ambiguity in using gamma rays to study this, as high-energy gamma rays can also be produced via other mechanisms, such as lower-energy photons scattering off of electrons, which commonly occurs near pulsars.”

For an affiliated video about the research, see Newly Discovered Gamma Ray Sources Have the Highest Energy Ever Recorded

The newly cataloged astrophysical gamma-ray sources have energies about 10 times higher than can be produced using experimental particle colliders on Earth. While higher-energy astrophysical particles have been previously detected, this is the first time specific galactic sources have been pinpointed. All of the sources have extremely energetic pulsars (highly magnetized rotating neutron stars) nearby. The number of sources detected may indicate that ultra-high-energy emission is a generic feature of powerful particle winds coming from pulsars embedded in interstellar gas clouds known as nebulae, and that more detections will be forthcoming.

The HAWC Gamma-Ray Observatory consists of an array of water-filled tanks sitting high on the slopes of the Sierra Negra volcano in Puebla, Mexico, where the atmosphere is thin and offers better conditions for observing gamma rays. When these gamma rays strike molecules in the atmosphere they produce showers of energetic particles. Although nothing can travel faster than the speed of light in a vacuum, light moves more slowly through water. As a result, some particles in cosmic ray showers travel faster than light in the water inside the HAWC detector tanks. The faster-than-light particles, in turn, produce characteristic flashes of light called Cherenkov radiation. By recording the Cherenkov flashes in the HAWC water tanks, researchers can reconstruct the sources of the particle showers to learn about the particles that caused them in the first place.

The HAWC collaborators plan to continue searching for the sources of high-energy cosmic rays. By combining their data with measurements from other types of observatories such as neutrino, x-ray, radio and optical telescopes, they hope to disentangle the astrophysical mechanisms that produce the cosmic rays that continuously rain down on our planet.

###

Video Clip: Newly Discovered Gamma Ray Sources Have the Highest Energy Ever Recorded

Publication: Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC, Physical Review Letters

Funding: Los Alamos LDRD, DOE-HEP

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Media Contact
James Riordon
[email protected]
505-667-3272

Original Source

https://www.lanl.gov/discover/news-release-archive/2020/January/0114-galactic-gamma-ray-sources.php

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025
Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graphene Oxide Boosts Perovskite Solar Cell Efficiency

Empowering Self-Advocacy in Young Adults with Disabilities

Micron-Scale Fiber Mapping Without Sample Prep

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.