• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Development of a stretchable vibration-powered device using a liquid electret

Bioengineer by Bioengineer
December 23, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Towards healthcare-applicable heartbeat and pulse sensors

IMAGE

Credit: NIMS


NIMS and AIST developed a liquid electret material capable of semi-permanently retaining static electricity. They subsequently combined this material with soft electrodes to create the first bendable, stretchable vibration-powered device in the world. Because this device is highly deformable and capable of converting very subtle vibrations into electrical signals, it may be applicable to the development of healthcare-devices, such as self-powered heartbeat and pulse sensors.

An electret material capable of semi-permanently retaining an electrical charge can generate voltage as its distance to the associated electrode changes. Because of this property, electret materials may be applicable to the development of vibration-powered (piezoelectric) devices and sensors capable of converting externally applied vibration and pressure into electrical signals. However, conventional electret materials are solid or in film form, and as such are inflexible and incapable of deformation into complex shapes, making them unsuitable for use in the development of wearable heartbeat and pulse sensors. A great deal of interest therefore exists in the development of bendable and stretchable vibration-powered devices that can be processed into a variety of shapes and used as such sensors.

This research group shielded porphyrin–an organic compound–with a flexible yet insulating structure (i.e., branched alkyl chains), thereby developing a liquid material at room temperature which is able to stably retain static charge on the porphyrin unit. The group subsequently developed a bendable and stretchable vibration-powered device. First, a high voltage was applied to this liquid material, thereby electrically charging it. The liquid material was then allowed to soak into a stretchable textile and the soaked textile was then sandwiched between soft, polyurethane electrodes integrated with silver-plated fibers as a wiring material. When the surface of the device is pressed with a fingertip, it generates a voltage in a range of ±100-200 mV and operates stably for at least 1.5 months.

In future research, the group hopes to achieve healthcare use of this device by enhancing the ability of the liquid electret material to retain static electricity and making modifications to the processing techniques applied to the device. The group will also pursue potential use of this vibration-powered device as a power source for IoT devices by combining it with a voltage-current conversion system and capacitor, etc.

###

This project was carried out by a research group led by Takashi Nakanishi (Group Leader, International Center for Materials Nanoarchitectonics, NIMS) and Manabu Yoshida (Team Leader, Sensing System Research Center, AIST). The project was funded by the JSPS Grant-in-Aid for Scientific Research (grant number: 18H03922) and the TIA collaborative research program “KAKEHASHI.”

This research was published in Nature Communications, an open access journal, on September 30, 2019.

Contacts

(Regarding this research)

Takashi Nakanishi

Group Leader,

Frontier Molecules Group

Nano-Materials Field,

International Center for Materials Nanoarchitectonics

National Institute for Materials Science (NIMS)

Tel: +81-29-860-4740

E-Mail: NAKANISHI.Takashi=nims.go.jp

(Please change “=” to “@”)
URL: https://www.nims.go.jp/funct_mol_g/en/index.html

Manabu Yoshida

Smart Interface Research Team

Sensing System Research Center

National Institute of Advanced Industrial Science and Technology (AIST)

Tel: +81-29- 861-2957

E-Mail: yoshida-manabu=aist.go.jp

(Please change “=” to “@”)

URL: https://www.aist.go.jp/aist_e/dept/en_delma.html

(General information)

Public Relations Office

National Institute for Materials Science

Tel: +81-29-859-2026, Fax: +81-29-859-2017

Email: pressrelease=ml.nims.go.jp

(Please change “=” to “@”)

Media Contact
Yasufumi Nakamichi
[email protected]
81-298-592-105

Original Source

https://www.nims.go.jp/eng/news/press/2019/09/201909300.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12249-8

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.