• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Gastric cancer susceptibility marker discovered

Bioengineer by Bioengineer
December 17, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © Lionel Costa


Gastric cancer, the third most common cause of cancer-related deaths, is often associated with a poor prognosis because it tends to be diagnosed at an advanced stage and is therefore difficult to treat. To reduce the death rate, it is essential to identify a biomarker enabling early diagnosis of this cancer. In pursuit of this goal, scientists from the Institut Pasteur, CNRS, and University of Rennes 1 working in partnership with the IMSS in Mexico and the University of Florence in Italy, analyzed the mechanisms involved in the development of gastric cancer during infection by the bacterial pathogen Helicobacter pylori. As a result, they were able to identify a potential susceptibility marker. Their findings were published in the journal Gut on December 10, 2019.

Helicobacter pylori is a bacterial pathogen that colonizes the stomachs of almost half the world’s population. H. pylori infection is acquired in childhood and lasts for decades. While remaining asymptomatic in most individuals, in some cases the infection develops into gastric cancer. H. pylori is currently thought to be responsible for approximately 90% of gastric cancer cases throughout the world, with an estimated death rate of approximately 800,000 per year.

The first steps have been taken toward deciphering the sequence of events triggered by bacterial infection ultimately leading to gastric cancer, a mechanism in which infected cell DNA instability plays a key role. Previous studies have demonstrated that H. pylori causes DNA breaks and impairs the DNA repair systems by stimulating the accumulation of mutations potentially targeting p53, a protein known as the “guardian of the genome”.

Protein p53 is essential for proper cell function since, if significant damage occurs within the genome, it temporarily stops the cell cycle for a sufficient period of time to repair DNA. If p53 is inactivated, the genome is therefore more likely to accumulate instabilities, and normal cells have a greater chance of transforming into cancer cells. It is important to understand cellular transformation caused by H. pylori, which stimulates cancer development, in order to identify a susceptibility marker. This would enable early treatment of patients, thus preventing the development of gastric cancer.

In vitro, in vivo, and clinical testing

The group led by Marie-Dominique Galibert, a scientist at the Rennes Institute of Genetics and Development (University of Rennes 1/CNRS) previously conducted studies revealing that, in response to DNA damage, p53 is stabilized by its interaction with the transcription factor USF1, thus enabling p53 to play its role in DNA repair. However, in vitro results from this publication relating to cell lines demonstrate that H. pylori not only reduces nuclear levels of factor USF1, but also relocates it, leading to its accumulation at the periphery of cells, thus preventing the formation of USF1/p53 complexes in the cell nucleus. If destabilized, protein p53 loses its function, resulting in accumulated oncogenic changes in infected cells, promoting their transformation into cancer cells. Therefore, the loss of USF1 from the nucleus is a key factor in inhibiting p53 activity, which stimulates the development of gastric cancer.

These findings have been confirmed by in vivo studies. Scientists demonstrated that gastric inflammatory lesions caused by H. pylori infection were more severe in a mouse model deficient in factor USF1. These results are also supported by clinical findings, since the prognosis is worse for gastric cancer patients with low levels of USF1 combined with low levels of p53.

These data provide a new conceptual basis for improving patient management. Indeed, variations in USF1 levels in gastric tumor tissue could be an indicator of poor prognosis in cases of gastric cancer, thus enabling subsets of patients at higher risk or with more severe forms of cancer to be identified.

Eliette Touati, joint last author of the article and scientist within the Helicobacter Pathogenesis Unit (Institut Pasteur/CNRS), concludes: “For the first time, we have demonstrated that the loss of transcription factor USF1 accelerates carcinogenesis caused by Helicobacter pylori. This makes USF1 a potential biomarker for gastric cancer susceptibility and a new therapeutic target in the treatment of this cancer.”

###

This work was funded by the research organizations mentioned above and also by Odyssey Reinsurance Company, the French Cancer League (LNCC), the Biosit joint service unit (UMS), and the Fondo de Investigacion en Salud (IMSS).

Media Contact
Myriam Rebeyrotte
[email protected]

Original Source

https://www.pasteur.fr/en/press-area/press-documents/gastric-cancer-susceptibility-marker-discovered

Related Journal Article

http://dx.doi.org/10.1136/gutjnl-2019-318640

Tags: BacteriologyBiologycancerCell BiologyGeneticsInfectious/Emerging DiseasesMicrobiology
Share18Tweet11Share3ShareShareShare2

Related Posts

blank

The Hidden Costs of Early Puberty and Childbirth

August 18, 2025
blank

Vacuolar Receptors Drive Plant Immunity via Autophagy

August 18, 2025

When Rattlesnakes Mate with Their Cousins: New Insights into Genetic Relationships

August 18, 2025

Decoding Glucose Congestion in Type 2 Diabetes

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Silver-Doped Zirconium Copper Oxide Detects Dihydroxybenzene Isomers

High-Resolution Study Reveals ‘Metabolic Handoff’ from Fruit Fly Mothers to Embryos

Aircraft Toilets May Help Halt the Spread of Global Superbugs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.