• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

SMART and NTU researchers design polymer that can kill drug-resistant bacteria

Bioengineer by Bioengineer
December 12, 2019
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New polymer may pave the way for developing drugs to which bacteria are significantly less resistant, a breakthrough that could save hundreds of thousands of lives each year

IMAGE

Credit: Singapore-MIT Alliance for Research and Technology (SMART)


Singapore, 12 December 2019 – Researchers from Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and Nanyang Technological University (NTU) have designed an antimicrobial polymer that can kill bacteria resistant to commonly used antibiotics, including the superbug Methicillin-resistant Staphylococcus aureus (MRSA). The breakthrough can pave the way for the development of medicine to which bacteria have a significantly slower rate of developing resistance, and help prevent hundreds of thousands of deaths each year caused by drug-resistant bacteria.

The new polymer is explained in a paper titled “Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters” published last month in leading science journal Nature Communications. It was jointly published by a group of scientists at NTU and AMR, and led by Dr Mary Chan-Park, SMART AMR Principal Investigator and Professor at NTU’s School of Chemical and Biomedical Engineering, and Dr Kevin Pethe, Associate Professor at the Lee Kong Chian School of Medicine at NTU. AMR, the Antimicrobial Resistance Interdisciplinary Research Group (IRG) is a part of SMART, MIT’s research enterprise in Singapore. SMART is funded by the National Research Foundation of Singapore (NRF) and the Campus for Research Excellence and Technological Enterprise (CREATE) to identify and conduct research on critical problems of societal significance. The AMR IRG is a unique translational research and entrepreneurship program that aims to solve the growing threat of resistance to antimicrobial drugs.

Increasing resistance to antimicrobial medicine is a cause for serious concern with at least 700,000 deaths each year caused by drug-resistant infections and diseases, according to a recent World Health Organisation report. In the United States alone, there is an antibiotic resistant infection acquired every 11 seconds, while a related death occurs every 15 minutes. While alpha-peptides have long been used to treat resistant bacteria such as MRSA, they tend to be rather unstable or toxic in the body. So for the first time, NTU and SMART researchers tested the use of beta-peptides to fight such bacteria in living beings. Designed for stability, the innovative new polymer degrades slowly in the body, giving it more time to work. Importantly, it has little to no toxicity impact.

“Typically, antibiotics don’t work on various forms of bacteria like biofilm and persistent bacteria as they become resistant,” said Chan-Park. “We are therefore really excited that our new beta-peptide polymer has shown great promise in combating existing antibiotic-resistant strains of bacteria. Further, it has also proven its lethality against biofilm and persistent types of bacteria, which current antibiotics have limited action upon.”

Innovative medical research like the new co-beta-peptide is a crucial step towards preventing the staggering number of deaths from persistent and resistant bacteria. AMR also has plans to test the use of this polymer for curing MRSA-affected livestock. This is a growing issue globally, with up to 50% of pig herds in parts of Europe affected by the virus. The new drug will be particularly beneficial to farm workers as the virus has been detected in 20-80% of workers in MRSA-positive herds.

While the next step for the research is to test the polymer on animals infected by MRSA in pig farms, the researchers are also preparing to have the drugs tested in clinical trials for use for the public.

“This is a promising new approach to combating antimicrobial resistance that hasn’t been done before,” said Pethe. “The toxicity and proof-of-concept studies have shown that this can be on the drug development pathway as it shows good potency and low toxicity and we look forward to having this developed as a topical drug for humans.”

Currently, AMR is looking for potential partners for further development of the antimicrobial polymers, particularly for human use.

###

About Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG)

The AMR IRG is a translational research and entrepreneurship program that tackles the growing threat of antimicrobial resistance. By leveraging talent and convergent technologies across Singapore and MIT, we aim to tackle AMR head-on by developing multiple innovative and disruptive approaches to identify, respond to, and treat drug-resistant microbial infections. Through strong scientific and clinical collaborations, our goal is to provide transformative, holistic solutions for Singapore and the world.

For more information, please visit: http://amr.smart.mit.edu/#home

About Singapore-MIT Alliance for Research and Technology (SMART)

Singapore-MIT Alliance for Research and Technology (SMART) is MIT’s Research Enterprise in Singapore, established by the Massachusetts Institute of Technology (MIT) in partnership with the National Research Foundation of Singapore (NRF) since 2007. SMART is the first entity in the Campus for Research Excellence and Technological Enterprise (CREATE) developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore. Cutting-edge research projects in areas of interest to both Singapore and MIT are undertaken at SMART. SMART currently comprises an Innovation Centre and six Interdisciplinary Research Groups (IRGs): Antimicrobial Resistance (AMR), BioSystems and Micromechanics (BioSyM), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Future Urban Mobility (FM) and Low Energy Electronic Systems (LEES).
SMART research is funded by the National Research Foundation Singapore under the CREATE programme.

For more information, please visit: http://smart.mit.edu

For media queries, please contact:

Tazkira Sattar

[email protected]

+65 8280 3055

Media Contact
Tazkira Sattar
[email protected]
658-280-3055

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12702-8

Tags: BacteriologyBiomedical/Environmental/Chemical EngineeringClinical TrialsMedicine/HealthPharmaceutical ChemistryPharmaceutical SciencesPolymer ChemistryPublic HealthResearch/DevelopmentVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Japan Unveils Its First Fully Domestically Developed Quantum Computer

Japan Unveils Its First Fully Domestically Developed Quantum Computer

August 8, 2025
New Phase II Trial Targets Advanced Follicular Lymphoma

New Phase II Trial Targets Advanced Follicular Lymphoma

August 8, 2025

Eco-Friendly ZIF-7 Carbon for Sensitive Rhodamine B Detection

August 8, 2025

Deep Learning Model Enhances Detecting Brain Hemorrhage

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    51 shares
    Share 20 Tweet 13
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Japan Unveils Its First Fully Domestically Developed Quantum Computer

New Phase II Trial Targets Advanced Follicular Lymphoma

Eco-Friendly ZIF-7 Carbon for Sensitive Rhodamine B Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.