• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Illuminating the path for super-resolution imaging with improved rhodamine dyes

Bioengineer by Bioengineer
December 3, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DUT and SUTD researchers developed a new strategy that enhances the brightness and clarity of sub-cellular structures when dyed with novel rhodamine fluorophores, laying the ground for the advancement of super-resolution microscopes

IMAGE

Credit: SUTD and DUT


Recent years have witnessed a rapid evolution of advanced fluorescence imaging techniques, such as single-molecule localization microscopy (SMLM) that allows for unprecedented resolution beyond the Abbe diffraction limit of the optical microscope.

However, insufficient brightness of fluorophores has posed a major bottleneck for the further advancement of this field and caused significant constraints to in vivo cellular dynamics studies.

Owing to the widespread applications of rhodamines in many super-resolution imaging studies, significant efforts have been taken to further enhance their performances.

Researchers from Dalian University of Technology (DUT) and the Singapore University of Technology and Design (SUTD) have developed a novel strategy for chemists to achieve brighter fluorescence and clearer resolution with the use of a new class of rhodamines (see image).

This means that chemists and scientists can benefit directly from a wider colour palette that they can use during biological imaging. This will help them to distinguish various intricate cellular structures for more precise analysis that was not possible before. Their research paper has been published in ACS publications.

The researchers also successfully demonstrated that this strategy was compatible with other families of fluorophores, resulting in substantially increased fluorescence brightness and “photon budget”. The increased “photon budget” is critical to improve the resolution and clarity of super-resolution microscopes.

The key to this strategy was the combination of the mechanistic understanding of the photophysical process in these fluorophores (namely, twisted intramolecular charge transfer), and the tailed molecular design strategy to inhibit this detrimental process via an electronic inductive effect.

“With the close integration of computational and experimental studies to understand the structure-property relationships of fluorophores, the dye chemistry is currently transforming from trial-and-error to design-based molecular engineering. We expect more high-performance dyes will be created soon and thus greatly aiding the development of super-resolution microscopy,” said Assistant Professor Liu Xiaogang from SUTD.

“In addition to brightness, other characteristics such as photostability and photo-activation properties need to be optimized to meet the stringent requirements of SMLM. We look forward to working closely with computational chemists to further advance the rational design of dyes for super-resolution imaging,” added Professor Xiao Yi from DUT.

###

Media Contact
Jessica Sasayiah
[email protected]
656-499-4823

Original Source

https://pubs.acs.org/doi/10.1021/jacs.9b04893

Related Journal Article

http://dx.doi.org/10.1021/jacs.9b04893

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsMolecular PhysicsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Rice miRNA: Key Regulator in Fungal Interactions

December 3, 2025
Human Impact Alters Leopard and Ungulate Dynamics

Human Impact Alters Leopard and Ungulate Dynamics

December 3, 2025

Adaptive Microsatellite Variants in Indian Yak Populations

December 2, 2025

Guide to Single-Cell RNA Transcriptomics Unveiled

December 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.