• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists develop first implantable magnet resonance detector

Bioengineer by Bioengineer
November 27, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new miniature NMR implant measures neuronal activity

IMAGE

Credit: whitehoune – stock.adobe.com, MPI f. Biological Cybernetics, University of Stuttgart. Compositing: Martin Vötsch (design-galaxie.de).

A team of neuroscientists and electrical engineers from Germany and Switzerland developed a highly sensitive implant that enables to probe brain physiology with unparalleled spatial and temporal resolution. They introduce an ultra-fine needle with an integrated chip that is capable of detecting and transmitting nuclear magnetic resonance (NMR) data from nanoliter volumes of brain oxygen metabolism. The breakthrough design will allow entirely new applications in the life sciences.

The group of researchers led by Klaus Scheffler from the Max Planck Institute for Biological Cybernetics and the University of Tübingen as well as by Jens Anders from the University of Stuttgart identified a technical bypass that bridges the electrophysical limits of contemporary brain scan methods. Their development of a capillary monolithic nuclear magnetic resonance (NMR) needle combines the versatility of brain imaging with the accuracy of a very localized and fast technique to analyze the specific neuronal activity of the brain. “The integrated design of a nuclear magnetic resonance detector on a single chip supremely reduces the typical electromagnetic interference of magnetic resonance signals. This enables neuroscientists to gather precise data from minuscule areas of the brain and to combine them with information from spatial and temporal data of the brain’s physiology,” explains principal investigator Klaus Scheffler. “With this method, we can now better understand specific activity and functionalities in the brain.”

According to Scheffler and his group, their invention may unveil the possibility of discovering novel effects or typical fingerprints of neuronal activation, up to specific neuronal events in brain tissue. “Our design setup will allow scalable solutions, meaning the possibility of expanding the collection of data from more than from a single area – but on the same device. The scalability of our approach will allow us to extend our platform by additional sensing modalities such as electrophysiological and optogenetic measurements,” adds the second principal investigator Jens Anders.

The teams of Scheffler and Anders are very confident that their technical approach may help demerge the complex physiologic processes within the neural networks of the brain and that it may uncover additional benefits that can provide even deeper insights into the functionality of the brain. With their primary goal to develop new techniques that are able to specifically probe the structural and biochemical composition of living brain tissue, their latest innovation paves the way for future highly specific and quantitative mapping techniques of neuronal activity and bioenergetic processes in the brain cells.

###

Original publication

Jonas Handwerker, Marlon Pérez-Rodas, Michael Beyerlein, Franck Vincent, Armin Beck, Nicolas Freytag, Xin Yu, Rolf Pohmann, Jens Anders & Klaus Scheffler

A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution.

Nature Methods; 25 November, 2019

Media Contact
Dr. Daniel Fleiter
[email protected]
40-707-160-1777

Original Source

https://www.mpg.de/14181470/1126-kybe-073056-Novel-sensor-implant-radically-improves-significance-of-NMR-brain-scans

Related Journal Article

http://dx.doi.org/10.1038/s41592-019-0640-3

Tags: Medicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Uric Acid-Creatinine Ratio Linked to NAFLD Metabolism

November 13, 2025

SIRT4’s Impact on Obesity: Mechanisms and Medicine

November 13, 2025

Enhancing Cardiac Targeting in AAV Gene Therapy

November 13, 2025

Modulating RNA-Binding Proteins with Small Biomolecules

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Controlling Pyramidal Nitrogen Chirality Asymmetrically

Uric Acid-Creatinine Ratio Linked to NAFLD Metabolism

Xiang Pigs Show Genetic Links to Wrinkled Skin

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.