• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Effective method for correcting various CNS pathologies developing under oxygen deficiency

Bioengineer by Bioengineer
November 25, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from Russia and Germany examined the role of neuronal kinome representatives in the implementation of adaptation mechanisms of the central nervous system under the influence of ischemia factors

IMAGE

Credit: Lobachevsky University


Hypoxia is a key factor that accompanies most brain pathologies, including ischemia and neurodegenerative diseases. Reduced oxygen concentration results in irreversible changes in nerve cell metabolism that entails cell death and destruction of intercellular interactions. Since neural networks are responsible for the processing, storage and transmission of information in the brain, the loss of network elements can lead to dysfunction of the central nervous system and, consequently, the development of neurological deficiency and the patient’s severe disability.

This is the reason why the world’s neurobiological community is currently involved in an active search for compounds that can prevent the death of nerve cells and support their functional activity under stress.

According to Maria Vedunova, Director of the Institute of Biology and Biomedicine at Lobachevsky University (UNN), the Institute’s researchers propose to use the body’s own potential to combat hypoxia and its consequences.

“Our particular interest is in the glial cell line-derived neurotrophic factor (GDNF). These signal molecules take an active part in the growth and development of nerve cells in the embryonic period, and they are also involved in the implementation of protective mechanisms and adaptation of brain cells when exposed to various stressors in adulthood,” Maria Vedunova notes.

By applying advanced techniques for the study of the structure and functional activity of brain neural networks, a team of researchers from the Lobachevsky State University of Nizhny Novgorod and from the Institute of Cell Biology and Neurobiology at the Charité University Hospital in Berlin have shown that activation of the neurotrophic factor GDNF prevents the death of nerve cells and helps to maintain neural network activity after hypoxic injury. Of particular significance are the data that identify key players in the molecular cascades responsible for the implementation of the GDNF protective effect, namely, the RET, AKT1, Jak1 and Jak2t enzyme kinases.

“Thanks to the results already obtained, Lobachevsky University scientists have significantly advanced in developing the theoretical basis for a new method for correcting the hypoxic conditions of the central nervous system. The next stage of the work will be focused on studying the possibility of neurotrophic factor GDNF activation in experimental animals in a simulated hypoxic damage,” continues Maria Vedunova.

It was shown by the researchers that activation of the glial cell line-derived neurotrophic factor helps protect brain cells from death during hypoxic damage and maintain the function of neural networks in the long term after the damaging effects.

A thorough understanding of the principles of work of neural networks subjected to hypoxic damage and of the protective action mechanisms of biologically active molecules of the body (the neurotrophic factor GDNF) can provide the basis for developing an effective method for correcting various CNS pathologies developing under oxygen deficiency.

The obtained results are of a fundamental nature, but they can be an important element in the comprehensive research aimed at developing new methods of diagnosis and treatment of CNS hypoxic conditions, which undoubtedly has great commercial potential.

###

This research was supported by a grant from the Russian Science Foundation, and the intermediate results of studies were published in the journal Oxidative Medicine and Cellular Longevity (journal impact factor 5.392): https://www.hindawi.com/journals/omcl/2019/1036907/

Media Contact
Nikita Avralev
[email protected]

Related Journal Article

http://dx.doi.org/10.1155/2019/1036907

Tags: BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Blood Pumps: Customized Ventricular Assist Device Insights

September 9, 2025
Mayo Clinic Physician Honored with Dr. Scott C. Goodwin Grant for Advancing Adenomyosis Research

Mayo Clinic Physician Honored with Dr. Scott C. Goodwin Grant for Advancing Adenomyosis Research

September 9, 2025

UCF Develops Free Resiliency Resources to Support Healthcare Workers and Students Globally

September 9, 2025

Beyond Weight Loss: The Science Behind How Healthy Eating Alleviates Chronic Pain

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Blood Pumps: Customized Ventricular Assist Device Insights

Mayo Clinic Physician Honored with Dr. Scott C. Goodwin Grant for Advancing Adenomyosis Research

Indiana University and Instructure Secured NSF Funding to Launch TOPSAIL: A Groundbreaking Infrastructure for Evaluating AI Tools in Education

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.