• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UTSA to unlock the power of sulfur in future drug design

Bioengineer by Bioengineer
November 21, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UTSA


Organosulfur compounds are widely present in our bodies and the natural environment. They are found in onions, shallots and even cauliflower. Medical research finds that when consumed, they can protect against cancer, heart disease and even diabetes. There is also evidence of these compounds’ antiviral and antibacterial uses. About a quarter of all pharmaceutical drugs currently use OSCs.

However, the use of sulfur atoms in the manufacturing of drugs is a double-edged sword. Sulfur is tricky to introduce into a molecule because currently available chemical tools do not allow researchers to introduce sulfur into molecules with high levels of precision. This shortcoming impacts scientists’ ability to make molecules that can one day become medicines, as well as the eventual efficacy of future drugs that rely on a particular geometry of synthetic sulfur molecules. UTSA has launched research that aims to solve this roadblock to expedite new drug development.

“Our end goal is to build a broad range of synthetic sulfur-containing molecules that will become readily accessible for organic synthesis and drug discovery applications,” says Associate Professor Oleg Larionov, principal investigator of this project at the UTSA Department of Chemistry. “We want to contribute to the improvement of human healthcare through more efficient syntheses of small molecule biological probes and therapeutic agents.”

Sulfur is the most common atom in small molecule medicines after oxygen and nitrogen, and a quarter of the most prescribed small molecule drugs are organosulfur compounds. At the functional group level, more than 37% of all FDA-approved organosulfur drugs contain the sulfonyl group, emphasizing the importance of this particular group in drug design.

There are challenges to the current synthetic methods that are used to make organosulfur compounds, For example, chemists often struggle to synthesize organosulfur compounds with a specific structural geometry. Usually, existing syntheses result in mixtures of products of different chemo-, regio- and stereo- isomers. Compounds with different chemo-, regio- and stereo- structures are made by the same types and numbers of atoms, but assembled in different ways.

Professor Larionov intends to develop methods to improve the outcome of synthesizing these sulfur-containing products with specific chemo-, regio- and stereoselectivity. The UTSA group will use more than $1 million in funding from the National Institutes of Health to improve the development of these therapeutic agents.

UTSA researchers plan to use intermediate oxidation states of organosulfur reagents, in particular sulfinates, to solve the industry’s limitations of current methods including the lack of efficient methods to synthesize sulfinates directly from abundant precursors.

“We want to streamline synthetic approaches and solve long-standing problems in medicinal chemistry,” says Larionov. “Our work and discoveries are the foundation for future medicinal chemistry research.”

Larionov’s research group focuses on complex molecule synthesis with a special focus on compounds targeting cancer. It’s expected that this research will yield results in four years. Figuring out how to improve the use of sulfur in drug development also has implications beyond medicine. Improving the use of OSCs can advance functional materials such as photovoltaics, organic electronics, carbon materials, nanotechnology, liquid crystals, magnetic materials, surfaces and interfaces, and biomaterials.

###

UTSA has been recognized by Nature Index as one of the leading universities globally for its output of research in the natural sciences, including being named one of the Top 25 Rising Young Universities. Among the Top 50 Young Universities in Chemistry, UTSA’s program is ranked first in the United States and 18th in the world.

Media Contact
Kara Soria
[email protected]
210-458-7495

Original Source

https://www.utsa.edu/today/2019/11/story/larionov-lab.html

Tags: BiochemistrycancerCardiologyChemistry/Physics/Materials SciencesDiabetesMedicine/HealthPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.