• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Outback telescope captures Milky Way center, discovers remnants of dead stars

Bioengineer by Bioengineer
November 20, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr Natasha Hurley-Walker (ICRAR/Curtin) and the GLEAM Team


A radio telescope in the Western Australian outback has captured a spectacular new view of the centre of the galaxy in which we live, the Milky Way.

The image from the Murchison Widefield Array (MWA) telescope shows what our galaxy would look like if human eyes could see radio waves.

Astrophysicist Dr Natasha Hurley-Walker, from the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR), created the images using the Pawsey Supercomputing Centre in Perth.

“This new view captures low-frequency radio emission from our galaxy, looking both in fine detail and at larger structures,” she said.

“Our images are looking directly at the middle of the Milky Way, towards a region astronomers call the Galactic Centre.”

The data for the research comes from the GaLactic and Extragalactic All-sky MWA survey, or ‘GLEAM’ for short.

The survey has a resolution of two arcminutes (about the same as the human eye) and maps the sky using radio waves at frequencies between 72 and 231 MHz (FM radio is near 100 MHz).

“It’s the power of this wide frequency range that makes it possible for us to disentangle different overlapping objects as we look toward the complexity of the Galactic Centre,” Dr Hurley-Walker said.

“Essentially, different objects have different ‘radio colours’, so we can use them to work out what kind of physics is at play.”

Using the images, Dr Hurley-Walker and her colleagues discovered the remnants of 27 massive stars that exploded in supernovae at the end of their lives.

These stars would have been eight or more times more massive than our Sun before their dramatic destruction thousands of years ago.

Younger and closer supernova remnants, or those in very dense environments, are easy to spot, and 295 are already known.

Unlike other instruments, the MWA can find those which are older, further away, or in very empty environments.

Dr Hurley-Walker said one of the newly-discovered supernova remnants lies in such an empty region of space, far out of the plane of our galaxy, and so despite being quite young, is also very faint.

“It’s the remains of a star that died less than 9,000 years ago, meaning the explosion could have been visible to Indigenous people across Australia at that time,” she said.

An expert in cultural astronomy, Associate Professor Duane Hamacher from the University of Melbourne, said some Aboriginal traditions do describe bright new stars appearing in the sky, but we don’t know of any definitive traditions that describe this particular event.

“However, now that we know when and where this supernova appeared in the sky, we can collaborate with Indigenous elders to see if any of their traditions describe this cosmic event. If any exist, it would be extremely exciting,” he said.

Dr Hurley-Walker said two of the supernova remnants discovered are quite unusual “orphans”, found in a region of sky where there are no massive stars, which means future searches across other such regions might be more successful than astronomers expected.

Other supernova remnants discovered in the research are very old, she said.

“This is really exciting for us, because it’s hard to find supernova remnants in this phase of life–they allow us to look further back in time in the Milky Way.”

The MWA telescope is a precursor to the world’s largest radio telescope, the Square Kilometre Array, which is due to be built in Australia and South Africa from 2021.

“The MWA is perfect for finding these objects, but it is limited in its sensitivity and resolution,” Dr Hurley-Walker said.

“The low-frequency part of the SKA, which will be built at the same site as the MWA, will be thousands of times more sensitive and have much better resolution, so should find the thousands of supernova remnants that formed in the last 100,000 years, even on the other side of the Milky Way.”

###

The new images of the Galactic Centre can be viewed on the GLEAMoscope or the GLEAM app.

Publications: ‘New candidate radio supernova remnants detected in the GLEAM survey over 345° Publications of the Astronomical Society of Australia (PASA) on November 20th, 2019.

‘Candidate radio supernova remnants observed by the GLEAM survey over 345° Publications of the Astronomical Society of Australia (PASA) on November 20th, 2019.

‘GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey II: Galactic Plane 345° Publications of the Astronomical Society of Australia (PASA) on November 20th, 2019.

Multimedia:

High-resolution images, an animation and a simulation are available from http://www.icrar.org/GLEAM2019

Contacts:

Dr Natasha Hurley-Walker (ICRAR / Curtin University)

Ph: +61 8 9266 9178 E: [email protected]

Pete Wheeler (Media Contact, ICRAR)

Ph: +61 423 982 018 E: [email protected]

Lucien Wilkinson (Media Contact, Curtin University)

Ph: +61 401 103 683 E: [email protected]

Media Contact
Pete Wheeler
[email protected]
61-423-982-018

Original Source

http://www.icrar.org/GLEAM2019

Tags: AstronomyAstrophysicsSpace/Planetary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.