• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

RNA regulation is crucial for embryonic stem cell differentiation

Bioengineer by Bioengineer
November 19, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Will Garland/AU


Embryonic stem cells (ESCs) are distinguished by their dual ability to self-renew and their potential to differentiate, both of which require tight regulatory control. During the differentiation of ESCs, various cells develop into specialised cell types such as skin cells, nerve cells, muscle cells, etc. While our understanding of ES cell regulation has been dominated by transcriptional and epigenetic models, the role of post-transcriptional regulation via nuclear RNA decay has remained less explored.

Now a Danish research team has identified a disruptive relationship between excess nuclear RNA levels, regulated by the PolyA-tail eXosome Targeting’ (PAXT) connection, and transcriptional control by the Polycomb Repressive Complex 2 (PRC2). The researchers propose that excess RNA hampers PRC2 function through its sequestration from DNA. Their results highlight the importance of balancing nuclear RNA levels and demonstrate the capacity of bulk RNA to regulate chromatin-associated proteins.

Previously, the Torben Heick Jensen Laboratory had identified and characterised the PAXT connection as an adaptor complex that targets polyadenylated (pA+) RNAs to the nuclear RNA exosome for decay (Read more). Upon depletion of PAXT components, including the zinc-finger protein ZFC3H1, cells stabilise and accumulate pA+ RNAs. This allows an approach to study the general effects of excess pA+ RNA in the nucleus.

Interestingly, removal of the PAXT component ZFC3H1 using CRISPR/Cas9 in mouse ESC subsequently disrupted their ability to differentiate. High throughput sequencing analysis revealed that Zfc3h1-/- knockout (KO) ES cells showed increased expression of differentiation associated RNAs that are usually silenced by the PRC2 complex. Upon further investigation, it was shown that the function and stability of the PRC2 complex was compromised due to excess binding of RNA as a consequence of Zfc3h1-/- KO. Together, this highlights the importance of maintaining a stable nuclear transcriptome through active RNA decay to prevent off-target effects as a result of RNA accumulation.

These findings are a result of a collaborative project between the laboratories of Torben Heick Jensen at the Department of Molecular Biology and Genetics, Aarhus University, and Kristian Helin at the Biotech Research and Innovation Centre, Copenhagen University, financed by the Novo Nordisk Foundation Center for Stem Cell Biology (DanStem) to investigate the role of RNA regulation in ES cell biology. The studies are primarily carried out by Will Garland from Aarhus University.

This study was published in the internationally recognised journal Cell Reports.

###

“A functional link between nuclear RNA decay and transcriptional control mediated by the Polycomb Repressive Complex 2” by William Garland, Itys Comet, Mengjun Wu, Aliaksandra Radzisheuskaya, Leonor Rib, Kristoffer Vitting-Seerup, Marta Lloret-Llinares, Albin Sandelin, Kristian Helin and Torben Heick Jensen. Cell Reports 29 (2019) pp. 1800-1811

For further information, please contact

Postdoc Will Garland – [email protected]

Professor Torben Heick Jensen – [email protected] – mobile:+4560202705

Department of Molecular Biology and Genetics, Aarhus University, Denmark

Media Contact
Torben Heick Jensen
[email protected]
456-020-2705

Original Source

http://mbg.au.dk/en/news-and-events/news-item/artikel/rna-regulation-is-crucial-for-embryonic-stem-cell-differentiation/

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2019.10.011

Tags: BiochemistryBiologyBiotechnologyCell BiologyGeneticsMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

HiSTaR: Mapping Spatial Domains with Hierarchical Transcriptomics

December 29, 2025

Evaluating Economic Strategies for Maternal-Neonatal Sepsis Solutions

December 29, 2025

Silica Nanoparticles Mitigate Chromium Stress in Marigolds

December 29, 2025

Mitochondrial Dynamics: Key to Inflammatory Disease Treatment

December 28, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HiSTaR: Mapping Spatial Domains with Hierarchical Transcriptomics

Evaluating Economic Strategies for Maternal-Neonatal Sepsis Solutions

Silica Nanoparticles Mitigate Chromium Stress in Marigolds

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.