• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop a new method to detect light in the brain

Bioengineer by Bioengineer
November 19, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Istituto Italiano di Tecnologia, University of Salento, and Harvard Medical School have developed a new light-based method to capture and pinpoint the epicenter of neural activity. The study published on Nature Methods

IMAGE

Credit: Antonio Balena (IIT)


Researchers from Istituto Italiano di Tecnologia (IIT) and University of Salento, both in Lecce, Italy, and Harvard Medical School in Boston have developed a new light-based method to capture and pinpoint the epicenter of neural activity in the brain.

The approach, described Oct. 7 in Nature Methods, lays the foundation for novel ways to map connections across different brain regions–an ability that can enable the design of devices to image various areas of the brain and even treat conditions that arise from malfunctions in cells inhabiting these regions, the researchers said.

The work was led by Ferruccio Pisanello at IIT, Massimo De Vittorio at IIT and University of Salento, and Bernardo Sabatini, the Alice and Rodman W. Moorhead III Professor of Neurobiology in the Blavantik Institute at Harvard Medical School, and funded by the European Research Council and by the National Institutes of Health in the United States.

One of the central challenges in modern neuroscience is recording the exchange of information between different regions of the brain, as well as between different cell types. The new method overcomes this challenge by allowing the simultaneous collection of signals from various brain regions through the use of a tapered optical probe.

The study marks the first instance of successfully using light to decode the activity of specific neuronal populations as well as manipulation of different brain regions with the use of a single probe. The approach relies on bringing fluorescent molecules into specific nerve cells in order to track their electric activity and to measure the level of neurotransmitters–molecules that act as chemical messengers across neurons.

To achieve this, the team used an optical fibre in the shape of a narrow cone with a tip so thin and so precise that it is capable of capturing light from single neurons along regions as long as 2 millimetres (0.07 inches).

The researchers inserted the light-sensing probe inside the striatum, a region of the brain involved in planning movements, and used it to track the release of dopamine, a critical neurotransmitter involved in motor control which also plays a key role in the development of disorders like Parkinson’s disease, schizophrenia and depression.

The device successfully captured neural activity in specific sub-regions of the striatum involved in the release of dopamine during specific behaviours.

The approach has effectively allowed scientists to capture how nerve signals travel in time and space and to gauge the concentration of specific neurotransmitters during specific actions. The method enriches researchers’ methodological repertoire and augments their ability to study the central nervous system and probe the molecular causes of neurological disorders.

###

Media Contact
Valeria delle Cave, IIT, press officer
[email protected]
0039-010-2896

Related Journal Article

http://dx.doi.org/10.1038/s41592-019-0581-x

Tags: Medicine/HealthMolecular BiologyneurobiologyOpticsParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Validating Urban Flood Models with Multisource Data

Comparing Methods to Measure Aggregate PFAS Exposure

Spin Squeezing Achieved in Diamond NV Centers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.