• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Moss: a bio-monitor of atmospheric nitrogen deposition in the Yangtze River Delta

Bioengineer by Bioengineer
November 18, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tao Huang


Atmospheric reactive nitrogen (N) deposition has more than doubled over the past century.  It is very important to estimate the rates and sources of N deposition because it’s considered as a main factor of ecosystem structure changes, such as soil acidification, water eutrophication and biodiversity losses, especially in countries with high N deposition, such as China. However, it is very difficult to obtain monitoring data of atmospheric N deposition because of the complexity of N species and the diversity of deposition forms.

Mosses are very widespread. Almost all of nitrogen for mosses growth are from air and rainfall. Therefore, many researchers investigate N deposition levels and its effects by using moss, especially in Europe and Southwest China. However, whether mosses can be used to monitor atmospheric N deposition in the Yangtze River Delta (YRD) region has yet to be determined.

“We collected rainwater and moss tissue at six monitoring sites in the YRD with three land-use types–urban, suburban, and rural and analyzed moss (Haplocladium microphyllum) N content, wet N deposition rate, and their N isotope signatures.” says Dr. Tao Huang, from the School of Geography, Nanjing Normal University.

Based on this study, they found a significant linear relationship between moss N content and wet N deposition rate. In addition, they also determined a consistent decreasing trend for moss N content and wet N deposition from urban to suburban to rural areas. The more negative N isotopic signature of suburban and rural mosses indicated N is mainly released from agricultural ammonia, while the less negative N isotopic signature of urban mosses highlighted a main influence from fossil fuel combustion and traffic emissions. The findings are published in Atmospheric and Oceanic Science Letters.

“The important revelation of our study is that the epilithic moss Haplocladium microphyllum can bio-monitor the rates and sources of atmospheric N deposition in the YRD, making up for the lack of monitoring data of N deposition,” concludes Dr. Huang.

###

Media Contact
Ms. Zheng Lin
[email protected]
86-108-299-5053

Original Source

http://159.226.119.58/aosl/EN/news/news21.shtml

Related Journal Article

http://dx.doi.org/10.1080/16742834.2019.1688629

Tags: AgricultureAtmospheric ScienceEarth ScienceForestryPlant SciencesPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unraveling the Connections Between Brain Development and Mental Health

November 4, 2025

ASBMB Announces Launch of Insights in Biochemistry and Molecular Biology, a New Journal Showcasing Breakthroughs Across Molecular Life Sciences

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Alzheimer’s Disease Disrupts Brain-to-Fat Tissue Communication, Potentially Aggravating Cardiovascular and Metabolic Health

DGIST Unveils Revolutionary Memristor Wafer Integration Technology, Advancing Brain-Inspired AI Chip Development

Navigating Transition: Care Triad’s Journey to Nursing Homes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.