• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Hot electrons harvested without tricks

Bioengineer by Bioengineer
November 15, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Maxim Pchenitchnikov, University of Groningen

Semiconductors convert energy from photons (light) into an electron current. However, some photons carry too much energy for the material to absorb. These photons produce ‘hot electrons’, and the excess energy of these electrons is converted into heat. Materials scientists have been looking for ways to harvest this excess energy. Scientists from the University of Groningen and Nanyang Technological University (Singapore) have now shown that this may be easier than expected by combining a perovskite with an acceptor material for ‘hot electrons’. Their proof of principle was published in Science Advances on 15 November.

In photovoltaic cells, semiconductors will absorb photon energy, but only from photons that have the right amount of energy: too little and the photons pass right through the material, too much and the excess energy is lost as heat. The right amount is determined by the bandgap: the difference in energy levels between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).

Nanoparticles

‘The excess energy of hot electrons, produced by the high-energy photons, is very rapidly absorbed by the material as heat,’ explains Maxim Pshenichnikov, Professor of Ultrafast Spectroscopy at the University of Groningen. To fully capture the energy of hot electrons, materials with a larger bandgap must be used. However, this means that the hot electrons should be transported to this material before losing their energy. The current general approach to harvesting these electrons is to slow down the loss of energy, for example by using nanoparticles instead of bulk material. ‘In these nanoparticles, there are fewer options for the electrons to release the excess energy as heat,’ explains Pshenichnikov.

Together with colleagues from the Nanyang Technological University, where he was a visiting professor for the past three years, Pshenichnikov studied a system in which an organic-inorganic hybrid perovskite semiconductor was combined with the organic compound bathophenanthroline (bphen), a material with a large bandgap. The scientists used laser light to excite electrons in the perovskite and studied the behavior of the hot electrons that were generated.

Barrier

‘We used a method called pump-push probing to excite electrons in two steps and study them at femtosecond timescales,’ explains Pshenichnikov. This allowed the scientists to produce electrons in the perovskites with energy levels just above the bandgap of bphen, without exciting electrons in the bphen. Therefore, any hot electrons in this material would have come from the perovskite.

The results showed that hot electrons from the perovskite semiconductor were readily absorbed by the bphen. ‘This happened without the need to slow down these electrons and, moreover, in bulk material. So, without any tricks, the hot electrons were harvested.’ However, the scientists noticed that the energy required was slightly higher than the bphen bandgap. ‘This was unexpected. Apparently, some extra energy is needed to overcome a barrier at the interface between the two materials.’

Nevertheless, the study provides a proof of principle for the harvesting of hot electrons in bulk perovskite semiconductor material. Pshenichnikov: ‘The experiments were performed with a realistic amount of energy, comparable to visible light. The next challenge is to construct a real device using this combination of materials.’

###

Reference: Swee Sien Lim, David Giovanni, Qiannan Zhang, Ankur Solanki, Nur Fadilah Jamaludin, Jia Wei Melvin Lim, Nripan Mathews, Subodh Mhaisalkar, Maxim S. Pshenichnikov, and Tze Chien Sum: Hot carrier extraction in CH3NH3PbI3 unveiled by pump-push-probe spectroscopy. Science Advances, 15 November 2019.

Simple Science Summary

The efficiency of solar panels is hampered by a ‘Goldilocks problem’: the light needs to have just the right amount of energy to be converted into a voltage. Too little energy and the photons (packages of light energy) pass right through the panel. Too much and the excess energy disappears as heat. Several tricks have been tried to harvest the high-energy photons. Scientists from the University of Groningen and Nanyang Technological University have now shown that by combining two materials, the excess energy is used rather than wasted as heat. This can potentially increase the energy efficiency of solar panels.

Media Contact
Rene Fransen
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aax3620

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)MaterialsMolecular PhysicsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Black Metal Could Significantly Enhance Solar Power Generation

Black Metal Could Significantly Enhance Solar Power Generation

August 12, 2025
Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

August 12, 2025

Tan Leads Investigation into Ferroelectric Oxides as Heterogeneous Photocatalysts for Ethane Dehydrogenation

August 12, 2025

Revolutionary Research Unveils “Pore Science and Engineering” Paving the Way for Next-Generation Porous Materials

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Urgent Reform Needed in Mental Health Care to Integrate Lifestyle Interventions

Survey Reveals Taste and Price, Not Calorie Count, Drive Online Takeaway Orders

Neighborhood Stress and Telomere Length in San Francisco Families

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.