• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Atomically dispersed Ni is coke-resistant for dry reforming of methane

Bioengineer by Bioengineer
November 15, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: QIAO Botao


Dry reforming of methane (DRM) is the process of converting methane (CH4) and carbon dioxide (CO2) into synthesis gas (syngas). Since CO2 and CH4 are the two most important atmospheric greenhouse gases (GHGs), as well as abundant and low-cost carbon sources, DRM has the potential to mitigate rising GHG emissions and simultaneously realize clean(er) fossil fuel utilization.

Ni catalysts are the most promising candidates for DRM due to their low cost and high initial activity. However, in situ catalyst deactivation caused mainly by carbon deposition (coking) has hindered their commercial use.

Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have now developed completely coke-resistant Ni-based single-atom catalyst (SAC). Their findings were published in Nature Communications.

The researchers first developed a hydroxyapatite- (HAP) supported Ni SAC, studied its DRM performance, and found that both HAP-supported Ni SAC and Ni nanocatalyst deactivated quickly during high-temperature DRM.

However, characterization of the used samples revealed that the deactivation mechanisms were totally different: Deactivation of nanocatalyst originated from the coke, while deactivation of Ni SAC stemmed from the sintering of Ni single atoms without any coke formation. These results implied that highly stable and coke-resistant Ni SAC could be obtained if Ni single atoms were effectively stabilized upon reaction.

The scientists then doped HAP with cerium to stabilize Ni single atoms through strong metal-support interaction. The resulting HAP-Ce-supported Ni SAC was highly stable upon reaction, without any coke formation.

Further studies revealed that Ni SAC is intrinsically coke-resistant. In other words, no coke was formed at all during the reaction (in contrast with coke being formed then removed). The coke resistance of Ni SAC derives from the catalyst’s unique capacity for selective activation of the first C-H bond in CH4.

###

The finding in this work may provide a new approach for the development of highly coke-resistant Ni-based catalsyts and facilitate their commercialization.

Media Contact
Wang Yongjin
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12843-w

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Develop “Knob” to Control Topological Spin Textures in Materials

October 6, 2025
Scientists develop red fluorescent dyes to enhance clarity in biomedical imaging

Scientists develop red fluorescent dyes to enhance clarity in biomedical imaging

October 6, 2025

Breakthrough: Ultrafast Squeezed Light Enables First Real-Time Measurement of Quantum Uncertainty

October 6, 2025

Exploring the Third Dimension in Data Storage Technology

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    72 shares
    Share 29 Tweet 18
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SLN Biopsy and Prognosis: HER2-Low vs Zero

Brain Structure in 12-Year-Old Preterm Children

Biomolecular Condensates: New Lung Cancer Therapeutic Targets

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.