• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers capture moving object with ghost imaging

Bioengineer by Bioengineer
November 13, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By using information from blurry images to create clear reconstructions, new method could expand applications for ghost imaging

IMAGE

Credit: Wei-Tao Liu, National University of Defense Technology


WASHINGTON — Researchers have developed a way to capture moving objects with the unconventional imaging method known as ghost imaging. The new method could make the imaging technique practical for new applications such as biomedical imaging, security checks and video compression and storage.

Ghost imaging comes with a host of advantages, one of which is that it allows one to form an image by illuminating the object with lower light levels than traditional imaging approaches. However, ghost imaging has been limited to stationary objects because it takes a long time to project the sequence of light patterns onto the object that is necessary to reconstruct an image. This causes images of a moving object to appear blurry.

In The Optical Society (OSA) journal Optics Letters, researchers from the National University of Defense Technology in China describe how they were able to combine information in the blurry images with details about the object’s location to create high quality images of moving objects with ghost imaging.

“Our work shows that blurred images contain useful information,” said research team leader Wei-Tao Liu. “With further improvements, this approach could make ghost imaging useful for applications such as biomedical imaging of human beings. If used with x-rays, for example, it could help reduce the radiation dose needed for imaging.”

Creating a clear image

The ghost imaging technique forms an image by correlating a beam that interacts with the object and a reference beam that does not. Individually, the beams don’t carry any meaningful information about the object. The imaging technique works with visible light, x-rays and other parts of the electromagnetic spectrum and, when the structured light beams are generated computationally with spatial light modulators, can be performed with a low-cost single-pixel detector instead of a complex, expensive camera.

To apply ghost imaging to moving objects, the new method uses a small number of light patterns to capture the position and trajectory of the object. The researchers developed an algorithm to cross correlate this positional information with blurred images captured at different positions, allowing a clear image to be gradually formed.

“This approach relaxes the requirement for fast imaging, and because the algorithm is linear, it doesn’t require a large amount of computing power,” explained Liu. “The method can be performed with a typical ghost imaging system without any additional devices and allows the image to be reconstructed in a timely manner.”

Standard setup captures new information

The researchers demonstrated their new method using a typical ghost imaging system, in which a random light field generated by a rotating diffuser was divided into two beams. One beam was recorded by a CCD camera, while the other illuminated a moving object the researchers created using a digital micromirror device. The light coming from the moving object was collected by a single-pixel detector.

“We demonstrated that our method captured the trajectory of the image and formed a high-quality image,” said Liu. “With these same experimental conditions, traditional ghost imaging approaches would have lost most of the object information due to blurring from movement.”

###

The researchers are now working to improve the performance of the approach so that it would work for objects moving at higher speeds. They also want to further reduce the amount of light needed to further expand the technique’s applications.

Paper: S. Sun, J.-H. Gu, H.-Z. Lin, L. Jiang, W.-T. Liu, “Gradual ghost imaging of moving objects by tracking based on crosscorrelation,” Opt. Lett., 44, 22, 5594-5597 (2019).
DOI: https://doi.org/10.1364/OL.44.005594.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optical science with short, original, peer-reviewed communications. Optics Letters accepts papers that are noteworthy to a substantial part of the optics community. Published by The Optical Society and led by Editor-in-Chief Xi-Cheng Zhang, University of Rochester, USA, Optics Letters is available online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:

[email protected]

Media Contact
James Merrick
[email protected]
202-416-1994

Original Source

https://www.osa.org/en-us/about_osa/newsroom/news_releases/2019/researchers_capture_moving_object_with_ghost_imagi/

Related Journal Article

http://dx.doi.org/10.1364/OL.44.005594

Tags: Chemistry/Physics/Materials SciencesOptics
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025
Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.