• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Leukaemia cells can transform into non-cancerous cells through epigenetic changes

Bioengineer by Bioengineer
November 13, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Manel Esteller


All the tissues of our body have the same DNA, but they perform very different functions and have very different aspects. For example, a lymphocyte and a neuron share the same genetic material, but they play very different tasks, and their appearance under the microscope is entirely dissimilar. What gives cells their own identity and differentiates them is their particular epigenetics, the chemical modifications that control gene expression. It has been accepted for decades that the semblance of a tumor cell (its “phenotype”) is discordant to the look of its original normal cell. Furthermore, recently, it has been discovered that an extraordinary phenomenon can occur in cancer: one type of cell may become a different type of cell.

This process is known as transdifferentiation and is used, for example, by human tumor cells as a strategy to escape from a drug designed to kill them. Today, an article published by researchers of the group of Dr. Manel Esteller, Director of the Josep Carreras Leukaemia Research Institute, ICREA researcher and professor of the University of Barcelona, describe how a leukaemia type B cell can transform into a different cell, a macrophage, changing its epigenome and consecutively getting a new cellular identity.

“We began with this work stating that if DNA methylation is the best known and validated epigenetic mark that confers its appearance to cells, such chemical modification could be directly involved in enabling tissue transdifferentiation. By using a cellular model of lymphoblastic leukaemia B cells that we could transform into macrophages, we obtained a high-resolution epigenetic profile of each step of the transdifferentiation process. This transdifferentiation example is interesting since it doesn’t only change the cell type, but also its behavior. While a cancerous cell multiplicates fast, a highly differentiated cell doesn’t proliferate at all” -comments Dr. Esteller about the research published in Leukaemia, and adds: “We saw that the epigenome of the leukaemic cell changes when it transdifferentiates. Chemically, the cells disguise their epigenome to resemble a macrophage. The changes occur in thousands of sites of the genetic material, even between chromosomal regions far apart from each other, which approach to activate those genes that provide a distinct appearance to the cell. Applications of this discovery could be avoiding the emergent resistance to cancer treatments with drugs: if we blocked the epigenetic changes identified, leukaemia cells could not select the transdifferentiation strategy to escape from the antitumor effect of the drug, and the therapy would be more effective.” -Concludes the researcher.”

###

Media Contact
Isabel Troytiño
[email protected]
34-636-761-712

Related Journal Article

http://dx.doi.org/10.1038/s41375-019-0643-1

Tags: cancerCell BiologyGeneticsHematologyMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Tracking Liver Fibrosis Regression via Serological Proteomics

Tracking Liver Fibrosis Regression via Serological Proteomics

August 19, 2025
blank

New Study Uncovers How HPV Reprograms Immune Cells to Promote Cancer Growth

August 19, 2025

Molecular and Clinical Insights into Lung Neuroendocrine Cancer

August 19, 2025

How Zelda and Studio Ghibli Influence Well-Being and Meaning: A Scientific Perspective

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Liver Fibrosis Regression via Serological Proteomics

Early Pregnancy Weight Gain Linked to Birth Weight

Scalable Shape Memory Alloy Fibers Power Robotic Hands

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.