• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

From plants, UVA extracts a better way to determine what our genes do

Bioengineer by Bioengineer
November 8, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New technique to help explore genetic diseases, benefit drug development

IMAGE

Credit: Dan Addison | UVA Communications

Scientists at the University of Virginia School of Medicine have developed a better way to determine what our genes do – allowing scientists to better probe the genetic causes of diseases and more efficiently determine whether new drugs will act on the intended target exactly as needed.

The researchers believe the new tool could revolutionize the study of biological systems by offering an exciting improvement: the ability to sort genes’ immediate effects from the complex chain reactions that follow.

To develop the improved technique, all the researchers needed was a missing ingredient, and they found it in plants.

Understanding Gene Function

Understanding what a specific gene does is very challenging. One gene can play many roles in keeping a cell or organism alive, and so scientists often block the function of genes to see what changes will result. That, however, can be like trying to figure out how a car works by manufacturing a car that is missing a part, then observing the car only after it is irrevocably damaged and sent to a junkyard. The car no longer works, but why?

“In biology, if we want to figure out how a system works, we break it and see what happens,” explained Michael J. Guertin, PhD, of UVA’s Department of Biochemistry and Molecular Genetics. “The problem with that approach is that if you make a mutation in a gene, or you delete a gene, then that can perturb the entire system for hours, days or, sometimes, an entire lifetime.”

That approach comes with some big drawbacks. Certain genes are essential, so blocking them, even in lab mice, simply isn’t possible. That makes it hard to study certain diseases. And even when it is possible, it’s hard to identify exactly what a gene is doing by looking at the many changes that result from blocking it.

Guertin and UVA research scientist Kizhakke Mattada Sathyan, PhD, wanted to find a better way. So they developed their new technique, an improvement on a commonly used system that lets scientists rapidly degrade the proteins a gene makes, essentially blocking the gene’s function. (This is akin to removing the radiator of a car while driving 60 miles per hour and then carefully observing the immediate results — one can easily conclude that the radiator keeps the car from overheating.)

The researchers were well familiar with the traditional system and its limitations. Sathyan knew, for example, that it was originally based on a process that occurs naturally in plants. He had a hunch – he calls it “intuition” – that plants held the secret for making it better.

And they did. He found that adding a small piece of a plant protein gave scientists much more precision and control. They could degrade the proteins made by a gene in only minutes, without many of the downstream effects traditionally caused by the process. And they could sort the immediate effects from the subsequent ones. “People have tried several other approaches to solve this issue, and none of them worked,” Sathyan said. “So this was really cool.”

Enhancing Gene Research

The improved technique comes at a negligible cost and has already drawn great interest from other labs doing similar work. “It’s pretty simple for a competent molecular biology lab to pick up the tools that we provided and adopt this within their research program,” Guertin said. “And we think it will offer big benefits for them.”

One of those benefits will come in drug development. The new system makes it much easier to determine if a drug is really working as intended – if it will have the same effect as blocking a gene in the lab. This is a key step in creating new treatments.

In addition, the work unexpectedly shed light on poorly understood plant biology, Sathyan noted, and that could have a useful application: “Another good thing about this is that auxins [the plant hormone] are some of the weed killers used in the garden,” he said. “It has some toxicity, so you could use this new information in the plant world to develop better, safer weed killers.”

###

Findings Published

The researchers have described their improved technique in the scientific journal Genes & Development. The research team consisted of Sathyan, Brian D. McKenna, Warren D. Anderson, Fabiana M. Duarte, Leighton Core and Guertin.

The research was supported by the National Institutes of Health, grants R35-GM128635. and R21-HG00902.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

Media Contact
Josh Barney
[email protected]
434-906-8864

Original Source

https://newsroom.uvahealth.com/2019/11/07/from-plants-uva-extracts-a-better-way-to-determine-what-our-genes-do/

Related Journal Article

http://dx.doi.org/10.1101/gad.328237.119

Tags: BiologyGene TherapyGenesGeneticsMedicine/HealthPharmaceutical SciencePharmaceutical SciencesPlant Sciences
Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Breakthrough Experiment Opens Door to Secure, High-Speed Communication

August 7, 2025
QUT Researchers Unveil Breakthrough Principle in Photochemistry

QUT Researchers Unveil Breakthrough Principle in Photochemistry

August 7, 2025

Molecules in Focus: Capturing the Timeless Dance of Particles

August 7, 2025

Rogue Waves: Not Freaks of Nature, Just a ‘Bad Day’ at Sea

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    50 shares
    Share 20 Tweet 13
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting-Edge Discoveries from MD Anderson: Research Highlights of August 7, 2025

Smart Deep Learning for Li-Ion Battery Health Prediction

Reevaluating Bipartite Patella: An Overlooked Ossicle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.