• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Water mold research leads to greater understanding of corn diseases

Bioengineer by Bioengineer
November 6, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: J. A. Rojas, A. Witte, Z. A. Noel, J. L. Jacobs, and M. I. Chilvers


Corn is a staple feed and biofuel crop with a value close to $3.7 billion in the Michigan economy alone. However, knowledge about seedling pathogens in Michigan corn fields is limited. A group of scientists in the Department of Plant, Soil and Microbial Sciences at Michigan State University set out to gain a better understanding of the composition of seedling pathogens, with results that will aid disease management research not only in corn but in rotational crops such as soybean and wheat.

This research focused on oomycetes, also known as water molds, which comprise several hundred organisms that include some of the most devastating plant pathogens some of which cause seedling disease and root rot. They used both traditional pathogen isolation methods and amplicon sequencing to identify the most abundant oomycetes from corn seedlings and characterize the isolates for their ability to cause disease on corn.

“The study is unique as we combined both a traditional pathogen isolation and amplicon sequencing to characterize oomycetes of corn,” explained Martin Chilvers, one of the researchers. “Using both of these approaches enabled us to get a snap shot of oomycetes in soil and corn seedlings, but also enabled virulence and fungicide sensitivity phenotyping.”

This research will lead to a greater understanding of the causes of seedling disease and root rot and enable more targeted approaches for disease management, from breeding hybrids with improved root rot resistance to screening fungicides that combat disease and improve management. To learn more, read “Diversity and Characterization of Oomycetes Associated with Corn Seedlings in Michigan,” published in the September issue of the open access Phytobiomes Journal.

###

Media Contact
Ashley Bergman Carlin
[email protected]
651-994-3832

Related Journal Article

http://dx.doi.org/10.1094/PBIOMES-12-18-0059-R

Tags: Agricultural Production/EconomicsAgricultureEcology/EnvironmentFertilizers/Pest ManagementFood/Food ScienceGeology/SoilMycologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

September 11, 2025
Innovative Protein Sources for Dairy Cattle Nutrition

Innovative Protein Sources for Dairy Cattle Nutrition

September 11, 2025

Scientists Identify Astrocytic “Brake” That Inhibits Spinal Cord Repair

September 11, 2025

Worms Uncover the True Crowded Nature of Cells

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

Redox Minerals and Organics in Jezero Crater

How Virtuousness Boosts Nurses’ Commitment Through Just Culture

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.