• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genetically modified mice can show which functional foods can heal kidney disease

Bioengineer by Bioengineer
November 6, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists create a mouse model that can show kidney disease progression and treatment in live animals

IMAGE

Credit: Associate Professor Noriyuki Yanaka and Assistant Professor Thanutchaporn Kumrungsee


Chronic kidney disease affects 750 million people each year. Aging populations and an increase in diseases such as diabetes will lead to a greater burden of kidney disease. In general, when doctors want to check if a patient has kidney disease, they must do so by a blood test or by biopsy. This is usually only feasible when the disease is in its later stages. By then it might be too late to treat, and the patients may have to undergo transplant or dialysis.

“So far, there is no method for imaging or visualizing of kidney disease in the early stage in both human and experimental animals. Our paper is the first to propose this solution. This method can let you see how severe the kidney disease is by observing the light emitted from the mice when they still alive,” says Assistant Professor Thanutchaporn Kumrungsee, Graduate School of Integrated Life Sciences, Hiroshima University.

In 2016, the team of Associate Professor Noriyuki Yanaka and Asst. Professor Kumrungsee developed a non-invasive method for monitoring obesity-caused inflammation to reduce the number of mice killed during experimentation.

“They are the closest things to us. We cannot see the real effects chemicals have on our bodies in tubes. If we cannot stop using [animals], we should do what we can to reduce the number of them used in testing,” says Kumrungsee.

The mice were engineered with a light-emitting gene that glowed when a protein was present at high levels. This protein (Saa3) is released in high amounts during inflammation or injury so it can be a useful biomarker of disease.

In the present study, to monitor disease progression and therapy Prof. Yanaka’s team fed mice a high-adenine diet to cause kidney disease. The high levels of adenine caused crystals (like kidney stones) to develop, leading to inflammation and increased levels of Saa3. The mice emitted light from their kidneys when under these injury conditions. The team has proposed this mouse model as a useful tool for monitoring kidney disease progression and therapeutic agent screening.

The researchers then screened possible treatment options and observed a promising chemical found in citrus fruit: G-Hes. After treating mice with G-Hes for three days, then feeding them the adenine diet for 3 weeks the researchers observed a decrease in the amount of inflammation seen in the kidneys, also confirmed through a blood test. Using this engineered mouse, the team was able to observe the kidneys at 1, 2 and 3 weeks into the diet and treatment without terminating the mice, reducing the number of mice required for the experiments.

In the future, the team would like to perform drug screening by using this model to prevent kidney disease in the early stages.

“We would also like to use this model to find functional foods and plants*. Beyond that If we can find these proteins can be used as a marker to not only detect early-stage kidney disease, but also other issues such as muscle damage,” states Kumrungsee.

*Functional foods and plants have possible benefits above the regular nutritional benefits gained from eating.

###

Since its foundation in 1949, Hiroshima University has strived to become one of the most prominent and comprehensive universities in Japan for the promotion and development of scholarship and education. Consisting of 12 schools and 11 graduate schools, ranging from International Development and Cooperation to Integrated Arts and Sciences, the university has grown into one of the most distinguished research universities in Japan. English website: https://www.hiroshima-u.ac.jp/en

Media Contact
Norifumi Miyokawa
[email protected]
81-082-424-4427

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-50685-0

Tags: BiologyGeneticsMedicine/HealthMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

CDCA7 Alleles Influence CG Methylation in Arabidopsis

CDCA7 Alleles Influence CG Methylation in Arabidopsis

November 7, 2025
blank

Global Study: Acute Myeloid Leukemia in Youths

November 7, 2025

Genomic Insights Reveal Litter Size Markers in Hetian Sheep

November 7, 2025

Microbial Strain Displacement Driven by Ecological Competition

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CDCA7 Alleles Influence CG Methylation in Arabidopsis

Population Lifestyle Changes Boost Life Expectancy: Study

Hanyang University Researchers Unveil Innovative High-Resolution Mechanoluminescent Platform Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.