• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Hot’ electrons in metallic nanostructures — non-thermal carriers or heating?

Bioengineer by Bioengineer
November 4, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Yonatan Dubi & Yonatan Sivan


What happens to a piece of metal when you shine light on it? This question, which has been one of the driving forces of modern physics, gained renewed interest in recent years, with the advances in fabrication of small metallic nano-particles. When the piece of metal is very small, it turns out that it can couple extremely well to visible light. The study of fundamental and applicable aspects of this interaction is typically referred to as plasmonics.

Within the field of plasmonics – and considering metallic nanoparticles – two different answers emerged to the question posed above. The first, which relies on classical physics and is quite intuitive, is that the nanoparticle heats up. Indeed, the fact that illuminated nanoparticles serve of localized heat sources has found a wide variety of applications, from cancer treatment to water desalination. The second answer is gentler, and suggests that upon illumination, the electrons deviate from equilibrium and occupy a non-Fermi distribution, characterized by an excess of electrons at high energies, so-called “hot electrons”.

These two pictures, heating vs “hot electrons”, are typically presented as orthogonal, and theories either treat one or the other. In a recent work, conducted by the groups of Prof. Yonatan Sivan and Yonatan Dubi (both from Ben-Gurion University, Israel), these two pictures were merged into a single theoretical framework, which enabled them to fully evaluate both the electron distribution and the electron and lattice temperatures of an illuminated nanoparticle. Their research results were published in Light: Science and Applications.

The picture that emerges from their study is that indeed the two effects – heating and generation of “hot electrons” – are present. Yet, in contrary to many recent claims, heating is far more important, and uses most of the illumination power input. Only a tiny fraction (less than one millionth) of the power input is channeled towards generation of “hot electrons”, which is thus an extremely inefficient process.

Many experimental and theoretical studies have celebrated the promise of exploiting “Hot Electrons” to perform various functions, from photo-detection to photo-catalysis. The work of Sivan and Dubi allows for a realistic evaluation of energy harvesting efficiency using “hot” electrons, and provides the limits of this efficiency. Furthermore, it serves as an essential first step towards realistic calculations of the complete energy harvesting process in many systems, from plasmonic-enhanced photo-catalytic systems to solar cells.

###

Media Contact
Yonatan Dubi
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-019-0199-x

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.