• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Evading Heisenberg isn’t easy

Bioengineer by Bioengineer
October 31, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: I. Shomroni, EPFL.


The limits of classical measurements of mechanical motion have been pushed beyond expectations in recent years, e.g. in the first direct observation- of gravitational waves, which were manifested as tiny displacements of mirrors in kilometer-scale optical interferometers. On the microscopic scale, atomic- and magnetic-resonance force microscopes can now reveal the atomic structure of materials and even sense the spins of single atoms.

But the sensitivity that we can achieve using purely conventional means is limited. For example, Heisenberg’s uncertainty principle in quantum mechanics implies the presence of “measurement backaction”: the exact knowledge of the location of a particle invariably destroys any knowledge of its momentum, and thus of predicting any of its future locations.

Backaction-evading techniques are designed specifically to ‘sidestep’ Heisenberg’s uncertainty principle by carefully controlling what information is gained and what isn’t in a measurement, e.g. by measuring only the amplitude of an oscillator and ignoring its phase.

In principle, such methods have unlimited sensitivity but at the cost of learning half of the available information. But technical challenges aside, scientists have generally thought that any dynamical effects arising from this optomechanical interaction don’t carry any further complications.

Now, in an effort to improve the sensitivity of such measurements, the lab of Tobias Kippenberg at EPFL, working with scientists at the University of Cambridge and IBM Research – Zurich, have discovered novel dynamics that place unexpected constraints on the achievable sensitivity. Published in Physical Review X, the work shows that tiny deviations in the optical frequency together with deviations in the mechanical frequency, can have grave results — even in the absence of extraneous effects — as the mechanical oscillations begin to amplify out of control, mimicking the physics of what is called a “degenerate parametric oscillator”.

The same behavior was found in two profoundly different optomechanical systems, one operating with optical and the other with microwave radiation, confirming that the dynamics were not unique to any particular system. The EPFL researchers charted the landscape of these dynamics by tuning the frequencies, demonstrating a perfect match with theory.

“Other dynamical instabilities have been known for decades and shown to plague gravitational wave sensors” says EPFL scientist Itay Shomroni, the paper’s first author. “Now, these new results will have to be taken into account in the design of future quantum sensors and in related applications such as backaction-free quantum amplification.”

###

Samples were fabricated at the Center of MicroNanoTechnology
(CMi) at EPFL and at IBM Reseach – Zurich.

Reference

Shomroni, A. Youssefi, N. Sauerwein, L.Qiu, P. Seidler, D. Malz, A. Nunnenkamp, T. J. Kippenberg. Two-tone optomechanical instability and its fundamental implications for backaction-evading measurements. Physical Review X 9, 041022; 30 October 2019. DOI:10.1103/PhysRevX.9.041022

Media Contact
Nik Papageorgiou
[email protected]
41-216-932-105

Original Source

https://actu.epfl.ch/news/evading-heisenberg-isn-t-easy/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevX.9.041022

Tags: Chemistry/Physics/Materials SciencesElectromagneticsOptics
Share15Tweet9Share3ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Insights on Implementing Patient-Reported Outcomes

Exploring NK Cell Therapies for Solid Tumors

Acupuncture Use for Low Back Pain in China

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.