• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

System provides cooling with no electricity

Bioengineer by Bioengineer
October 30, 2019
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Passive device relies on a layer of material that blocks incoming sunlight but lets heat radiate away

IMAGE

Credit: Courtesy of Arny Leroy, Evelyn Wang, et. al


Imagine a device that can sit outside under blazing sunlight on a clear day, and without using any power cool things down by more than 23 degrees Fahrenheit (13 degrees Celsius). It almost sounds like magic, but a new system designed by researchers at MIT and in Chile can do exactly that.

The device, which has no moving parts, works by a process called radiative cooling. It blocks incoming sunlight to keep from heating it up, and at the same time efficiently radiates infrared light — which is essentially heat — that passes straight out into the sky and into space, cooling the device significantly below the ambient air temperature.

The key to the functioning of this simple, inexpensive system is a special kind of insulation, made of a polyethylene foam called an aerogel. This lightweight material, which looks and feels a bit like marshmallow, blocks and reflects the visible rays of sunlight so that they don’t penetrate through it. But it’s highly transparent to the infrared rays that carry heat, allowing them to pass freely outward.

The new system is described today in a paper in the journal Science Advances, by MIT graduate student Arny Leroy, professor of mechanical engineering and department head Evelyn Wang, and seven others at MIT and at the Pontifical Catholic University of Chile.

Such a system could be used, for example, as a way to keep vegetables and fruit from spoiling, potentially doubling the time the produce could remain fresh, in remote places where reliable power for refrigeration is not available, Leroy explains.

Minimizing heat gain

Radiative cooling is simply the main process that most hot objects use to cool down. They emit midrange infrared radiation, which carries the heat energy from the object straight off into space because air is highly transparent to infrared light.

The new device is based on a concept that Wang and others demonstrated a year ago, which also used radiative cooling but employed a physical barrier, a narrow strip of metal, to shade the device from direct sunlight to prevent it from heating up. That device worked, but it provided less than half the amount of cooling power that the new system achieves because of its highly efficient insulating layer.

“The big problem was insulation,” Leroy explains. The biggest input of heat preventing the earlier device from achieving deeper cooling was from the heat of the surrounding air. “How do you keep the surface cold while still allowing it to radiate?” he wondered. The problem is that almost all insulating materials are also very good at blocking infrared light and so would interfere with the radiative cooling effect.

There has been a lot of research on ways to minimize heat loss, says Wang, who is the Gail E. Kendall Professor of Mechanical Engineering. But this is a different issue that has received much less attention: how to minimize heat gain. “It’s a very difficult problem,” she says.

The solution came through the development of a new kind of aerogel. Aerogels are lightweight materials that consist mostly of air and provide very good thermal insulation, with a structure made up of microscopic foam-like formations of some material. The team’s new insight was to make an aerogel out of polyethylene, the material used in many plastic bags. The result is a soft, squishy, white material that’s so lightweight that a given volume weighs just 1/50 as much as water.

The key to its success is that while it blocks more than 90 percent of incoming sunlight, thus protecting the surface below from heating, it is very transparent to infrared light, allowing about 80 percent of the heat rays to pass freely outward. “We were very excited when we saw this material,” Leroy says.

The result is that it can dramatically cool down a plate, made of a material such as metal or ceramic, placed below the insulating layer, which is referred to as an emitter. That plate could then cool a container connected to it, or cool liquid passing through coils in contact with it, to provide cooling for produce or air or water.

Putting the device to the test

To test their predictions of its effectiveness, the team along with their Chilean collaborators set up a proof-of-concept device in Chile’s Atacama desert, parts of which are the driest land on Earth. They receive virtually no rainfall, yet, being right on the equator, they receive blazing sunlight that could put the device to a real test. The device achieved a cooling of 13 degrees Celsius under full sunlight at solar noon. Similar tests on MIT’s campus in Cambridge, Massachusetts, achieved just under 10 degrees cooling.

That’s enough cooling to make a significant difference in preserving produce in remote locations, the researchers say. In addition, it could be used to provide an initial cooling stage for electric refrigeration, thus minimizing the load on those systems to allow them to operate more efficiently with less power.

Theoretically, such a device could achieve a temperature reduction of as much as 50 C, the researchers say, so they are continuing to work on ways of further optimizing the system so that it could be expanded to other cooling applications such as building air conditioning without the need for any source of power. Radiative cooling has already been integrated with some existing air conditioning systems to improve their efficiency.

Already, though, they have achieved a greater amount of cooling under direct sunlight than any other passive, radiative system other than those that use a vacuum system for insulation — which is very effective but also heavy, expensive, and fragile.

This approach could also be a low-cost add-on to any other kind of cooling system, providing additional cooling to supplement a more conventional system. “Whatever system you have,” Leroy says, “put the aerogel on it, and you’ll get much better performance.”

###

The work was partly supported by an MIT International Science and Technology Initiatives (MISTI) Chile Global Seed Fund grant, and by the U.S. Department of Energy through the Solid State Solar Thermal Energy Conversion Center (S3TEC).

Written by David L. Chandler, MIT News Office

Related links

Paper: “High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel.”
https://advances.sciencemag.org/content/5/10/eaat9480?rss=1

Getting more heat out of sunlight
http://news.mit.edu/2019/aerogel-passive-heat-sunlight-0702

A new way to provide cooling without power
http://news.mit.edu/2018/device-provides-cooling-without-power-1128

Featured video: Pulling drinking water out of thin air
http://news.mit.edu/2018/featured-video-pulling-drinking-water-out-of-thin-air-0723

Evelyn Wang named head of Department of Mechanical Engineering
http://news.mit.edu/2018/evelyn-wang-named-department-of-mechanical-engineering-head-0622

In field tests, device harvests water from desert air
http://news.mit.edu/2018/field-tests-device-harvests-water-desert-air-0322

Media Contact
Abby Abazorius
[email protected]
617-253-2709

Original Source

http://news.mit.edu/2019/system-provides-cooling-no-electricity-1030

Tags: Chemistry/Physics/Materials SciencesEarth ScienceEnergy SourcesEnergy/Fuel (non-petroleum)Materials
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

WSU Researchers Uncover Biological Mechanism Behind Coho Salmon Die-Offs

August 14, 2025
Fluorenol Photobases Enable Ambient CO2 Capture

Fluorenol Photobases Enable Ambient CO2 Capture

August 14, 2025

Accelerating Detection of Shadows in Fusion Systems Using AI

August 14, 2025

Introducing 3D-SLISE: A Quasi-Solid Electrolyte Paving the Way for Safer and Greener Lithium-Ion Batteries

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Compound Targets Survival Mechanisms in Aromatase Inhibitor-Resistant Breast Cancer Cells

Groundbreaking Discovery Ignites New Hope for Breathing Recovery Following Spinal Cord Injuries

Scientists Return to Fundamentals with Streamlined Plant Genomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.