• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NIH grants UVA researchers $2.7 million to develop precision treatment for deadly heart plaque

Bioengineer by Bioengineer
October 28, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Engineering and medicine team up to develop new diagnostic tool

IMAGE

Credit: (Photo/Tom Cogill)


The National Institutes of Health has awarded a $2.7 million grant to scientists from the University of Virginia to study a genetic variation associated with coronary heart disease.

Together, experts from UVA’s Division of Cardiovascular Medicine, the Robert M. Berne Cardiovascular Research Center and the Department of Biomedical Engineering hope to uncover the disease’s origin and development. A breakthrough here could lead to more effective, individualized treatments for coronary heart disease.

According to the Center for Disease Control and Prevention, cardiovascular disease is the leading cause of death in the U.S. for both men and women, and coronary heart disease, a type of cardiovascular disease also known as “heart artery plaque” or “hardening of the arteries,” claims over 370,000 lives annually.

“Identifying new approaches to address cardiovascular disease promises to provide added benefit in terms of treatment and prevention,” said Dr. Coleen McNamara, Frances Myers Ball professor of internal medicine at the UVA School of Medicine. “We are grateful to the UVA Center for Engineering in Medicine for the seed grant that funded work to generate key feasibility data for this successful grant application.”

Dr. McNamara will work with Eli Zunder, a UVA assistant professor of biomedical engineering. Combining their disciplines of medicine and engineering, they will develop a technique to investigate the cellular and molecular processes behind the deadly buildup of plaque in the arteries, called atherosclerosis.

Dr. McNamara’s group is credited with discovering a link to cardiovascular disease on the ID3 gene: a genetic variation called a “single nucleotide polymorphism.” Yet it remains a mystery exactly how the genetic variation influences the production of arterial wall plaque. Zunder said McNamara had “previously shown that cells of the immune system are likely to play a role in the ID3-cardiovascular disease association, but we suspected that other cell types may be involved.”

McNamara and Zunder aim to find out what functions the ID3 gene regulates by examining cell behavior in the artery wall.

Dr. McNamara and Zunder will use Zunder’s expertise in flow cytometry, a laboratory method used to analyze cell characteristics, to examine the behavior of multiple different cell types in the arterial wall simultaneously. This high-dimensional analysis will create a comprehensive picture of how the ID3 variation affects the artery wall.

If the exact connection between the ID3 gene and cardiovascular disease is revealed, then a patient’s genetic makeup might be used to inform treatment strategies. “By adding newly identified measurements to heart plaque risk scores,” Dr. McNamara said, “we may have a way to enhance predictive capabilities and eventually provide precision treatment based on a patient’s genotype.”

“We have known for 20 years that the ID3 gene was connected to cardiovascular disease, and we identified the association of the single nucleotide polymorphism with human artery plaque 10 years ago,” Dr. McNamara said. “But we did not have the technology to identify the unique changes on a single-cell level that would enhance our insights into how this occurs. With Eli Zunder’s biomedical advancements and the marriage of our two specialties, we may be able to uncover the processes that trigger disease and create an effective precision diagnostic tool in a much shorter time frame.”

“Our pilot study was designed to test the feasibility of applying my single-cell analysis techniques to this system,” said Zunder. “The preliminary results have been very promising, and now we’re excited to apply this technique to further investigate other parts of the system.”

Dr. McNamara and Zunder’s research has also garnered attention from the American Heart Association, which recently awarded them two related grants totaling $500,000 over the next three years.

Media Contact
Wende Hope
[email protected]
434-806-9326

Original Source

https://engineering.virginia.edu/news/2019/10/nih-grants-uva-researchers-27m-could-lead-precision-treatment-deadly-heart-plaque

Tags: Biomedical/Environmental/Chemical EngineeringCardiologyCell BiologyGeneticsMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.