• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UW study advances alignment of single-wall carbon nanotubes along common axis

Bioengineer by Bioengineer
October 16, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Wyoming


A University of Wyoming researcher and his team have shown, for the first time, the ability to globally align single-wall carbon nanotubes along a common axis. This discovery can be valuable in many areas of technology, such as electronics, optics, composite materials, nanotechnology and other applications of materials science.

“Unlike previous efforts to align nanotubes using nanotube solution filtration, we created an automated system that could create multiple aligned films at one time,” says William Rice, an assistant professor in UW’s Department of Physics and Astronomy. “Automating the filtration system also had the effect that we could precisely control the filtration flow rate, which produced higher alignment.”

Rice was corresponding author of a paper, titled “Global Alignment of Solution-Based, Single-Wall Carbon Nanotube Films via Machine-Vision Controlled Filtration,” which was published Oct. 9 in the print version of Nano Letters, an international journal that reports on fundamental and applied research in all branches of nanoscience and nanotechnology. An online version of the paper appeared last month.

Joshua Walker, a third-year physics Ph.D. student from Cheyenne, was the paper’s lead author. Valerie Kuehl, a third-year Ph.D. chemistry student from Beulah, Colo., was a contributing author of the paper.

Single-wall carbon nanotubes are one-dimensional crystals formed by wrapping a single layer of graphite, often called graphene, into a nanoscopic cylinder. They are 0.5 to 1.5 nanometers in diameter and range from 200 to 10,000 nanometers in length. One nanometer is one-billionth of a meter.

Because of this unique geometry, carbon nanotubes can either be metals or semiconductors, depending on how the graphene is wrapped, Rice explains. Carbon nanotubes can exhibit remarkable electrical conductivity, and they possess exceptional tensile strength and thermal conductivity.

“Aligned carbon nanotubes have the potential to act as excellent optical polarizers, which are important for optically determining strain in materials. For example, if you look at your windshield with polarized glasses, you can see areas of different strain in the glass,” Rice says. “Recent work by other groups also suggests that aligned nanotubes can be used as transistors, polarized light emitters and directional heat sinks. The hope is that a new generation of all-carbon electronics can be ushered in with the use of carbon nanotubes, graphene and vacancies in diamonds.”

Over the last decade, substantial progress has been made in the chemical control of single-wall carbon nanotubes. Rice and his team used machine-vision automation and parallelization to simultaneously produce globally aligned, single-wall carbon nanotubes using pressure-driven filtration. Feedback control enables filtration to occur with a constant flow rate that not only improves the nematic ordering of the single-wall carbon nanotubes, but also provides the ability to align a wide range of single-wall carbon nanotube types and on a variety of nanoporous membranes using the same filtration parameters.

Additionally, Rice says his research team flattened the meniscus of the nanotube solution in the glass funnel using a treatment process called silanization. This prevented the nanotubes from becoming scrambled by an uneven solution front as the nanotubes were filtered. These two advances produce nanotube films that exhibit excellent alignment across the entire structure, which was measured using a variety of polarized optical techniques.

“Carbon nanotubes are significant material system because of their impressive physical properties, such as extremely high thermal conductivity; a Young’s modulus much greater than steel; current-carrying capacity a thousand times that of copper; and excellent light-matter coupling,” he says.

A Young’s modulus is ratio of the stress (force per unit area) to the strain (percentage change in the physical dimensions) in a material, Rice says. Plastics, rubber and wood have low Young’s moduli, while steel, diamond and nanotubes have high Young’s moduli.

###

Jeffrey Fagan, a chemical engineer with the Materials Science and Engineering Division at the National Institute of Standards and Technology (NIST); Adam Biacchi, a materials chemist with the Nanoscale Device Characterization Division of NIST; Thomas Searles, an assistant professor in Howard University’s Department of Physics and Astronomy; and Angela Hight Walker, a project leader with the Nanoscale Device Characterization Division of NIST, also contributed to the paper.

Media Contact
William Rice
[email protected]

Original Source

http://www.uwyo.edu/uw/news/2019/10/uw-study-significantly-advances-alignment-of-single-wall-carbon-nanotubes-along-common-axis.html

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.9b02853

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share14Tweet9Share3ShareShareShare2

Related Posts

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

September 1, 2025

Chain Recognition Advances Head–Tail Carboboration of Alkenes

September 1, 2025

Solar Orbiter Tracks Ultrafast Electrons Back to the Sun

September 1, 2025

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ablation Boosts Immunotherapy in Lung Cancer

Music and Singing: Enhancing Migrants’ Health Research Participation

Rare Arachnoid Diverticulum: A Complication of ETV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.