• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The nano-guitar string that plays itself

Bioengineer by Bioengineer
October 14, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lancaster University


Scientists at Lancaster University and the University of Oxford have created a nano-electronic circuit which vibrates without any external force.

Using a tiny suspended wire, resembling a vibrating guitar string, their experiment shows how a simple nano-device can generate motion directly from an electrical current. The research has been published in Nature Physics.

To create the device, the researchers took a carbon nanotube, which is wire with a diameter of about 3 nanometres, roughly 100,000 times thinner than a guitar string. They mounted it on metal supports at each end, and then cooled it to a temperature of 0.02 degrees above absolute zero. The central part of the wire was free to vibrate, which the researchers could detect by passing a current through it and measuring a change in electrical resistance.

Just as a guitar string vibrates when it is plucked, the wire vibrates when it is forced into motion by an oscillating voltage. This was exactly as the researchers expected.

The surprise came when they repeated the experiment without the forcing voltage. Under the right conditions, the wire oscillated of its own accord.

The nano-guitar string was playing itself.

Lead researcher Dr Edward Laird of Lancaster University said: “It took us a while to work out what was causing the vibrations, but we eventually understood. In such a tiny device, it is important that an electrical current consists of individual electrons. The electrons hop one by one onto the wire, each giving it a small push. Usually these pushes are random, but we realised that when you control the parameters just right, they will synchronise and generate an oscillation.”

So what note does the nano-guitar play?

“The nanotube is far thinner than a guitar string, so it oscillates at much higher frequency – well into the ultrasound range so no human would be able to hear it.

“However, we can still assign it a note. Its frequency is 231 million hertz, which means it’s an A string, pitched 21 octaves above standard tuning.”

The nano-oscillator could be used to amplify tiny forces, such as in novel microscopes, or to measure the viscosity of exotic quantum fluids. These experiments will be pursued in a new laboratory that Dr Laird is setting up in the Physics Department at Lancaster, supported by a €2.7M grant from the European Union.

###

Media Contact
Gillian Whitworth
[email protected]
44-152-459-2612

Related Journal Article

http://dx.doi.org/10.1038/s41567-019-0683-5

Tags: AcousticsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025
Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    94 shares
    Share 38 Tweet 24
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    100 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pomegranate Extract Protects Skin from UVB Damage

Supporting Families’ Mental Health Post-NICU Discharge

Continuous Indices Reveal Kidney Transplant Rejection Spectrum

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.