• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The cell of origin in childhood brain tumors affects susceptibility to therapy

Bioengineer by Bioengineer
November 17, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Children that are diagnosed with the severe the brain tumour malignant glioma often have a very poor prognosis. Knowledge about how pediatric malignant glioma arises and develops is still limited. New findings from Uppsala University show that in mice glioma development and glioma cell properties are affected by both age and the cell type from which the tumour has arisen. The tumour cell of origin was also important for the susceptibility of the tumour cells towards cancer drugs.

The study is published in the journal Cancer Research.

The brain is composed mainly of two types of cells; neurons and supportive cells called glial cells. Glioma are brain tumours that are similar to glial cells and in adults malignant glioma is the most common form of primary brain tumour. In children malignant glioma is relatively rare, but, as for adults, the prognosis is very poor, and of all childhood cancers malignant glioma is among the most lethal.

Malignant glioma in children is much less studied than in adults and to improve the possibilities to find efficient drugs more knowledge and relevant disease models are needed. Also, most studies in the field have been focused on the genetics of the disease and there is a lack of knowledge about in which cell type the tumour has originated and how this particular cell type affects the properties of the tumour. This is exactly what the researchers have investigated in the present study where they have used mouse models of glioma and have found that malignant glioma originating from different cell types behave differently.

The researchers induced glioma tumours from both undifferentiated stem cells, that can give rise to both neurons and glial cells, and from oligodendrocyte precursor cells (OPC), that are more differentiated and can only give rise to glial cells.

'It turned out that tumours originating from stem cells were both more frequent and more aggressive as compared to those that originated from OPC. A very interesting finding was that tumour cells that had originated from undifferentiated stem cells were more susceptible to a range of cancer drugs,' says Lene Uhrbom who has led the study at the Department of Immunology, Genetics and Pathology.

The researchers also compared how the tumours developed in young mice as compared to adult mice and found that both age and cell of origin are important for tumour development. Furthermore, they could show that their tumour models in young mice were highly similar to a subgroup of malignant glioma in children.

'We have developed new models that are relevant for studies of childhood malignant glioma. There is a lack of such models and we believe that these can become very useful in further studies to uncover the underpinnings of this devastating disease. Our finding that the cell of origin could influence the response to treatment also shows that is important to identify clinically relevant subgroups of childhood malignant glioma, to be able to design the most efficient therapy for each patient. Our next challenge will be to find out how different cells of origin for glioma gives rise to these differences and to identify new targets for therapy,' says Lene Uhrbom.

###

Media Contact

Lene Uhrbom
[email protected]
46-184-715-063
@UU_University

http://www.uu.se

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Revolutionary Cyclic Thioether Additive Boosts Lithium Metal Batteries to 3,000 Stable Cycles!

August 25, 2025

Breakthroughs in Screening Techniques and Point-of-Care Diagnostics Transform Colorectal Cancer Detection

August 25, 2025

Introducing the Second Beijing Consensus on Holistic Integrative Medicine for Managing Helicobacter pylori-Associated Disease-Syndrome

August 25, 2025

Innovative Technique Unveiled for Probing Atomic Internal Structures

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    143 shares
    Share 57 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Cyclic Thioether Additive Boosts Lithium Metal Batteries to 3,000 Stable Cycles!

Breakthroughs in Screening Techniques and Point-of-Care Diagnostics Transform Colorectal Cancer Detection

Introducing the Second Beijing Consensus on Holistic Integrative Medicine for Managing Helicobacter pylori-Associated Disease-Syndrome

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.