• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Quality control in immune communication: Chaperones detect immature signaling molecules

Bioengineer by Bioengineer
September 24, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sina Bohnacker / Technical University of Munich
Based on: Protein Data Base ID 3DUH.

The cells of our immune system constantly communicate with one another by exchanging complex protein molecules. A team led by researchers from the Technical University of Munich (TUM) has now revealed how dedicated cellular control proteins, referred to as chaperones, detect immature immune signaling proteins and prevent them from leaving the cell.

The body’s defenses systems have to react quickly whenever pathogens enter the organism. Intruders are identified by white blood cells which pass on the information to other immune cells. Information is transmitted via secreted signaling proteins, the interleukins, which dock onto the matching receptors on the recipient cells and for example make the target cells divide and release antibodies.

Quality control holds back immature signaling molecules

Researchers from TUM, the Helmholtz Zentrum München and Stanford University have, by studying interleukin 23, been able to show how cells ensure that the interleukin signalling proteins are built correctly. “Intensive research is currently devoted to Interleukin 23, not only because of its central role in the defense against pathogens, but also because it can trigger autoimmune diseases,” says Matthias Feige, Professor for Cellular Protein Biochemistry at TUM and head of the research project.

Interleukin 23 is composed of two proteins, which have to combine in the cell to form an active complex in order to be able to trigger the desired signals. As the scientists have demonstrated in their study, molecules referred to as chaperones retain one part of the interleukin known as IL23-alpha in the cell until it has been incorporated into the complete complex. This way the cell makes sure that it does not secrete any unpaired IL23-alpha and thus controls the biosynthesis of this important interleukin and accordingly of the messages it sends. Chaperones are molecular protein machines that ensure that other proteins are built correctly.

“We were able to show that unbound IL23-alpha has chemical bonds which are prone to interaction with chaperones,” Feige explains. In the completed interleukin 23 these bonds are closed, so that the chaperon no longer is able to interact and hence the complete molecule can leave the cell.

Targeted interventions in immune cell communication

Since normally isolated IL23-alpha is not present outside of the cell, it was not clear whether it could influence the immune system by itself. The researchers were able to test this with a slightly modified version of the molecule created in the laboratory, which was based on computer-aided design. In this new molecule variant, the bonds which could have connected to the chaperone were closed.

“The modified molecules can leave the cell freely,” says Susanne Meier, first author of the study. “They then dock to the same receptors as the complete interleukin 23 and trigger a similar but weaker reaction.” Accordingly, IL23-alpha can be made a functional signalling protein by molecular engineering, which allows it to bypass the cell’s quality control systems.

“It is possible that the engineered IL23-alpha can interact with even further receptors in immune cells and influence them in an as yet unknown manner,” Feige says. “That is one of the next questions we will investigate.” The results may serve as the basis for future drugs that use engineered interleukins to modulated the immune system in a desired manner.

###

Contact:

Prof. Dr. Matthias Feige

Technical University of Munich

Cellular Protein Biochemistry

Tel.:+49 89 289 13667

E-Mail: [email protected]

Web links:

Profile of Professor Matthias Feige
https://www.professoren.tum.de/en/feige-matthias-j/

Cellular Protein Biochemistry
https://www.department.ch.tum.de/cell/home/

Institute of Advanced Study at TUM
https://www.ias.tum.de/start/

Center of Allergy & Environment (ZAUM)
https://www.zaum-online.de/

Bavarian NMR Center
http://www.bnmrz.org/

Media Contact
Matthias Feige
[email protected]

Original Source

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35700/

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12006-x

Tags: BiochemistryBiologyImmunology/Allergies/AsthmaMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Hidden Catalysis: Everyday Lab Gear Turns into Powerful Reagents Through Abrasion

Hidden Catalysis: Everyday Lab Gear Turns into Powerful Reagents Through Abrasion

November 11, 2025
Innovative Self-Heating Catalyst Breaks Down Antibiotic Pollutants in Water and Soil

Innovative Self-Heating Catalyst Breaks Down Antibiotic Pollutants in Water and Soil

November 11, 2025

Revolutionizing Water-Based Light Emission: 1,000x Boost in White-Light Output Achieved with Non-Harmonic Two-Color Femtosecond Lasers

November 11, 2025

Universitat Jaume I’s Institute of Advanced Materials Drives Breakthroughs in Next-Generation Neuromorphic Computing Research

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking GSK-3β Inhibition for Lung Cancer Treatment

Exploring Innovative Community Treatments for Eating Disorders

Impact of miR-4289-Loaded Exosomes on Stem Cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.