• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Quantum destabilization of a water sandwich

Bioengineer by Bioengineer
September 24, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2019 KAUST

From raindrops rolling off the waxy surface of a waterlily leaf, to the efficiency of desalination membranes, interactions between water molecules and water-repellent “hydrophobic” surfaces are all around us. The interplay becomes even more intriguing when a thin water layer becomes sandwiched between two hydrophobic surfaces, KAUST researchers have shown.

In the early 1980s, researchers first noted an unexpected effect when two hydrophobic surfaces were slowly brought together in water. “At some point, the two surfaces would suddenly jump into contact–like two magnets being brought together,” says Himanshu Mishra from KAUST’s Water Desalination and Reuse Center. Mishra’s lab investigates water at all length scales, from reducing water consumption in agriculture, to the properties of individual water molecules.

Researchers were unable to explain the phenomenon at the molecular level, so in 2016, Mishra organized a KAUST conference on the subject. “We brought together leaders in the field–experimentalists and theorists–leading to intense debates on the understanding of hydrophobic surface forces,” he says.

Part of the challenge was that the hydrophobic interaction is unique to water. “Gaining insights through other liquids or adding cosolvents to water is not feasible: the interaction is dramatically reduced or lost,” explains Buddha Shrestha, a postdoctoral researcher in Mishra’s lab.

Inspired by the conference, Mishra came up with the idea of comparing ordinary water with “heavy water,” in which the hydrogen atoms are replaced by a heavier hydrogen isotope called deuterium.

“Our surface force measurements revealed that the attractive force was always approximately 10 percent higher in H2O than in D2O,” says Sreekiran Pillai, a Ph.D. student in Mishra’s lab. Collaborating with Tod Pascal at University of California San Diego, the team came up with an explanation.

The smaller an object, the less strictly it is governed by the laws of classical physics and the more it is subject to quantum effects. The tiny hydrogen atom is a quantum object–sometimes behaving like a particle, sometimes more like a wave. Deuterium, twice as heavy as hydrogen, is less subject to quantum effects. The consequence is that D2O is less destabilized than H2O when squeezed between two hydrophobic surfaces and the hydrogen bonds between water molecules get broken.

The discovery may have practical implications, Mishra says. “For example, these findings might aid the development of nanofluidic platforms for molecular separation.”

“This is very impressive work that shows how quantum nuclear effects in water become substantial on the nanoscale,” explains Professor Mischa Bonn, director of the Max Planck Institute for Polymer Research. “The results illustrate that there is still much to learn about water at the fundamental level, yet with direct relevance to nanoscale-confined water in, for instance, nanopores used for water purification and desalination.”

###

Media Contact
Carolyn Unck
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/877/quantum-destabilization-of-a-water-sandwich

Related Journal Article

http://dx.doi.org/10.1021/acs.jpclett.9b01835

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesHydrology/Water ResourcesIndustrial Engineering/ChemistryNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Drought Stress: PHD Gene Expression in Alfalfa

December 26, 2025
Temperature and Heat Penetration in Canned vs. Pouched Whelk

Temperature and Heat Penetration in Canned vs. Pouched Whelk

December 26, 2025

Unveiling Genetic Factors Affecting Milk Fat in Holsteins

December 26, 2025

Halophilic Bacteria: Combatting Salt Stress with EPS and IAA

December 26, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Disease Clusters: Insights from Multimorbidity Review

Mitochondrial Autophagy: Key to Anti-Aging

Gut Metabolite Influences Salt Sensitivity, Hypertension Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.