• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Hook-on drugs: New delivery strategy for K-Ras disruption

Bioengineer by Bioengineer
September 24, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Junko Ohkanda Ph.D., Professor of Academic Assembly, Institute of Agriculture, Shinshu University

“The strategy was to design the drug to be able to hook into the hole of the FTase and GGTase I, otherwise the surface of the proteins are too large and slippery,” Dr. Junko Ohkanda of Shinshu University explains her strategy behind her paper chosen by Chemistry – A European Journal as a “Hot Paper”.

Pharmaceutical companies around the world have been trying to concoct an effective drug to target K-Ras proteins for the last 20 to 30 years. When K-Ras proteins mutate, they cause the multiply switch to remain perpetually on, becoming an aggressive and untreatable form of cancer. In 90 to 100% of the difficult lung and pancreatic cancers, K-Ras is said to play a role. 30% of all cancers is said to have some form of Ras mutation.

Scientists have had trouble designing a drug to infiltrate K-Ras due to a lack of interactive pockets. A new strategy was devised to attack the FTase, an important enzyme in the lipid modification of K-Ras. Without FTase, the mutated K-Ras would be unable to multiply uncontrollably. Scientists have developed large numbers of FTase inhibitors, but found it difficult to inactivate K-Ras modification.

Even when the FTase was inhibited, K-Ras modifications were not stopped because GGTase I was also reacting with the K-Ras, despite its different reactive cavity. It was not understood why, until its mechanism was elucidated that FTase and GGTase I are both made of two protein parts, one of which is the same, with the exact same DNA.

Near the activated cavity FTase and GGTase I have the same cluster of acidic amino acids, like glutamic acid and aspartic acid, carrying a negative charge. When closely observing the K-Ras C-terminus, it had an interactive positive charge. Other Ras proteins do not have this positively charged area. Only K-Ras has this cluster of positive charges. This is why even if the FTase was inhibited, the K-Ras still reacted with the GGTase I, even though its cavity was different.

This is where Dr. Ohkanda had her moment of inspiration. In theory, the pocket of the enzyme and the cystine key attach and join together. But in this case the surfaces of the proteins, with the plus and the minus also interact. Even if the FTase is inhibited the K-Ras mistakenly interacted with the GGTase I. Dr. Ohkanda and her colleagues thought with one compound they could work two functions.

The strategy was to design a molecule to mimic the part of the K-Ras that acts on the active pocket and also the acidic surface. It goes without saying that the function of the drug must happen inside the cell. Large molecules that are useful in protein-protein interactions are often too large to go inside the cell. This is a problem that riddles many drug developers: delivery methods.

Dr. Ohkanda thought if she could rationally design the thiol on the end of the K-Ras to hook on to the active pocket of the FTase and GGTase I, the extended interactive positive charge portion could interact and penetrate the cell membrane. If the cysteine portion could hook on into the cavity, the connected interactive positive chain can be small and delivered strategically to the acidic surface of the enzymes.. It was difficult to minimize the size of the compound while increasing its stability and keeping its ability for chemical reactions. By using a peptidomimetic of the same length and same key, they were able to successfully penetrate the cell in vitro, disrupting the runaway K-Ras multiplication.

More studies are needed to increase the activity of the compound, test in vivo and to evaluate its toxicity long before the compound can be used as a treatment for cancers. Dr. Ohkanda continues to work with an international team of experts to elucidate the mechanism of action and their interactions to rationally design effective drugs to stop the multiplication of such cells.

###

About Shinshu University

Shinshu University is a national university in Japan founded in 1949 and working on providing solutions for building a sustainable society through interdisciplinary research fields: material science (carbon, fiber, composites), biomedical science (for intractable diseases, preventive medicine), and mountain science. We aim to boost research and innovation capability through collaborative projects with distinguished researchers from the world. For more information, please see: http://www.shinshu-u.ac.jp/english/

Media Contact
Hitomi Thompson
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/chem.201903129

Tags: BiochemistryBiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologycancerPharmaceutical Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    99 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Public Views on Microplastic Solutions: Knowledge and Costs

New Discoveries in Lincosamide Biosynthesis Unveiled

Sex Differences in Brain mRNA Impact Pair Bonding

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.