• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Instant messaging in proteins discovered

Bioengineer by Bioengineer
September 19, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Göttingen researchers unravel fundamental communication processes in proteins

IMAGE

Credit: Nora Eulig

Proteins are essential for every living cell and responsible for many fundamental processes. In particular, they are required as bio-catalysts in metabolism and for signalling inside the cell and between cells. Many diseases come about as a result of failures in this communication, and the origins of signalling in proteins have been a source of great scientific debate. Now, for the first time, a team of researchers at the University of Göttingen has actually observed the mobile protons that do this job in each and every living cell, thus providing new insights into the mechanisms. The results were published in Nature.

Researchers from the University of Göttingen led by Professors Kai Tittmann and Ricardo Mata found a way to grow high-quality protein crystals of a human protein. The DESY particle accelerator in Hamburg made it possible to observe protons (subatomic particles with a positive charge) moving around within the protein. This surprising “dance of the protons” showed how distant sections of the protein were able to communicate instantaneously with each other – like electricity moving down a wire.

In addition, Tittmann’s group obtained high-resolution data for several other proteins, showing in unprecedented detail the structure of a kind of hydrogen bond where two heavier atoms effectively share a proton (known as “low-barrier hydrogen bonding”). This was the second surprise: the data proved that low-barrier hydrogen bonding indeed exists in proteins resolving a decades-long controversy, and in fact plays an essential role in the process.

“The proton movements we observed closely resemble the toy known as a Newton’s cradle, in which the energy is instantly transported along a chain of suspended metal balls. In proteins, these mobile protons can immediately connect other parts of the protein,” explained Tittmann, who is also a Max Planck Fellow at the Max Planck Institute for Biophysical Chemistry in Göttingen. The process was simulated with the help of quantum chemical calculations in Professor Mata’s laboratory. These calculations provided a new model for the communication mechanism of the protons. “We have known for quite some time that protons can move in a concerted fashion, like in water for example. Now it seems that proteins have evolved in such a way that they can actually use these protons for signalling.”

The researchers believe this breakthrough can lead to a better understanding of the chemistry of life, improve the understanding of disease mechanisms and lead to new medications. This advance should enable the development of switchable proteins that can be adapted to a multitude of potential applications in medicine, biotechnology and environmentally friendly chemistry.

###

Original publication: Shaobo Dai et al. Low-barrier hydrogen bonds in enzyme cooperativity. Nature 2019. DoI: 10.1038/s41586-019-1581-9

Contact:

Professor Kai Tittmann

University of Göttingen

Department of Molecular Enzymology

Julia-Lermontowa-Weg 3, 37077 Göttingen

Tel: +49 (0)551-39177811

Email: [email protected]

http://www.uni-goettingen.de/en/sh/198266.html

Professor Ricardo Mata

University of Göttingen

Institute of Physical Chemistry

Tammannstr. 6, 37077 Göttingen

Tel: +49-(0)551-3923149

Email: [email protected]

http://www.uni-goettingen.de/en/people/123989.html

Media Contact
Melissa Sollich
[email protected]

Original Source

http://www.uni-goettingen.de/en/3240.html?id=5604

Related Journal Article

http://dx.doi.org/10.1038/s41586-019-1581-9

Tags: BiochemistryBiologyBiomechanics/BiophysicsCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthMicrobiology
Share14Tweet9Share3ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Privacy and Disclosure in Eating Disorders

Ultrathin Silicon Hall Sensors Detect 3D Tumors Early

Tissue-Specific Gene Expression Variance in Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.