• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study points to new drug target in fight against cancer

Bioengineer by Bioengineer
September 18, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research shows how a cancer-linked protein blocks key mitochondrial gateway

IMAGE

Credit: CTBP/Rice University

HOUSTON — (Sept. 18, 2019) — Researchers have identified a potential new drug target in the fight against cancer.

In a study this week in the Proceedings of the National Academy of Sciences, an international team of researchers describe how a cancer-linked version of the protein mitoNEET can close the primary gateways in the outer surface of mitochondria, the “power plants” that supply cells with chemical energy. These gateways, or “voltage-dependent anion channels” (VDACs), normally open and close to allow the passage of metabolites and other small molecules between mitochondria and the rest of the cell.

“The VDAC channel transports all types of metabolites between the cytosol and the mitochondria,” said study co-author José Onuchic, a physicist and co-director of Rice University’s Center for Theoretical Biological Physics (CTBP). “Dysfunction of this channel is involved in many diseases including cancer and fatty liver disease.”

The research was performed by an international team of computational and structural biologists from CTBP, the University of California, San Diego (UCSD), the Hebrew University of Jerusalem and the University of Missouri-Columbia.

In the study, they detailed how mitoNEET regulates VDAC, and showed that the high-affinity interaction between the two proteins could be disrupted by a drug that targets VDAC.

“In its naturally occurring reduced state in healthy cells, mitoNEET has no measurable affinity for VDAC,” said Onuchic, a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar in Cancer Research who led Rice’s efforts on the project. “This indicates that the mechanism of interaction is redox-dependent and that targeting of the highly important VDAC complex in diseased states can be fine-tuned.”

MitoNEET, a known player in cancer as well as diabetes, aging and Parkinson’s disease, is a member of the NEET family of proteins, which transport clusters of iron and sulfur molecules inside cells. These clusters help regulate cells by controlling reduction-oxidation, or redox processes, and metabolism.

MitoNEET naturally adheres to the outer surface of the mitochondria, and the researchers said the direct connection of mitoNEET to VDAC, one of the most abundant proteins in the mitochondrial outer membrane, is significant.

Co-author Patricia Jennings, a structural biologist at UCSD, said, “The discovery that mitoNEET directly gates VDAC, the major porin of mitochondria, as well as the accompanying structural analysis and predictions for this interaction, affords a new platform for investigations of methods to induce cancer cells to commit cell suicide, or apoptosis/ferroptosis, in a cancer-specific, regulated process.”

A defining characteristic of cancer progression is altered cellular metabolism. Study co-author Rachel Nechushtai of the Hebrew University said the work suggests it may be possible to regulate the metabolic and functional interactions of VDAC with a drug or drugs that could be useful against several kinds of cancer.

Onuchic said, “Fine-tuning a drug that specifically alters the redox-state of interaction between VDAC and mitoNEET would allow the development of new weapons to battle multiple cancers.”

Nechushtai and Jennings first detailed the molecular structure of mitoNEET in 2007, and many of the collaborators on the project have worked together for more than a decade to decipher the workings of mitoNEET and related proteins like NAF-1 and MiNT.

“The junction of iron and redox is key to the control of many different cellular processes involved in many human pathologies,” University of Missouri co-author Ron Mittler said. “Identifying a master point of regulation for these processes that is mediated by the mitoNEET-VDAC interaction is a major step forward in our understanding of these processes.”

The researchers said longstanding ties between the collaborators and joint funding from both the US and Israel played a key role in the success of the project.

###

Additional co-authors are Colin Lipper and Jason Stofleth, both of UCSD; Yang Sung Sohn of the Hebrew University; and Fang Bai and Susmita Roy, both of Rice. Onuchic is the Harry C. and Olga K. Wiess Chair of Physics and a professor of physics and astronomy at Rice.

The research was supported by the National Science Foundation (1613462, 1427654, 1614101), the U.S.-Israel Binational Science Foundation (2015831), CPRIT, the University of Missouri, the Israel Cancer Research Fund, the Keck Center for Interdisciplinary Bioscience Training of the Gulf Coast Consortia and the National Institutes of Health (R01-GM101467).

High-resolution IMAGES are available for download at:

https://news-network.rice.edu/news/files/2019/09/0916-REDOX-mitoneet-JO22-lg.jpg

CAPTION: José Onuchic (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2019/09/0916-REDOX-fig-lg.jpg

CAPTION: When oxidized, the protein mitoNEET (green) can close “voltage-dependent anion channels,” or VDACs (center), passageways that allow metabolites and signaling molecules to pass through the outer membrane (blue band) of the mitochondria, the “power plant” that supplies cells with chemical energy. (Image courtesy of CTBP/Rice University)

Links and resources:

The DOI of the PNAS paper is: 10.1073/pnas.1908271116

A copy of the paper is available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1908271116

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Media Contact
Jade Boyd
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1908271116

Tags: AgingBiochemistryBiomechanics/BiophysicscancerCell BiologyMedicine/HealthParkinson
Share13Tweet8Share2ShareShareShare2

Related Posts

Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

August 5, 2025
Diastereodivergent Routes to Multi-Substituted Cycloalkanes

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

August 5, 2025

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025

Zero-Dimensional Octahedral Metal Halides Synthesized via Solvent Incorporation

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Problematic Internet Use in Young Chinese Teens

Global Cyclospora Infection in HIV/AIDS Patients Reviewed

Metals Linked to Beach Plastic Litter in South Africa

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.