• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sesame yields stable in drought conditions

Bioengineer by Bioengineer
September 18, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Irish Lorraine B. Pabuayon

Texas has a long history of growing cotton. It’s a resilient crop, able to withstand big swings in temperature fairly well. However, growing cotton in the same fields year after year can be a bad idea. Nutrients can get depleted. Disease can lurk in the ground during the winter season, only to attack the following year. Thus, rotating cotton with other crops could be a better system.

Agronomists have been researching various alternative crops that will grow well in western Texas. This area is part of the Ogallala water aquifer, which has been hit extremely hard the past few decades by drought. Another crop, sorghum, grows well with low water availability, but the yield can be greatly affected by drought conditions.

Irish Lorraine B. Pabuayon, a researcher at Texas Tech University (TTU), is on the team looking at an alternative crop for west Texas: sesame.

Like cotton and sorghum, sesame is also a “low-input” crop. This means it does not need a great deal of water, something that vegetable crops, corn and wheat need regularly and in large quantities.

“When introducing new crops to a water-limited system, it is important for growers to justify the water requirements of the new crops,” says Pabuayon. “Properly determining the water requirements of the crops is important. Management decisions for wise use of limited water resources requires understanding a crop’s moisture requirements.”

Pabuayon and the TTU team found that even under conditions that lowered sorghum and cotton yields, sesame performed well. This could be good news for west Texas farmers.

“Our results showed that sesame yields were not significantly altered under water-deficit conditions,” says Pabuayon. “Sesame continued to have consistent yields, even when water-deficit conditions decreased sorghum’s yield by 25% and cotton’s yield by 40%.”

Having another crop that has good market value and can grow well during drought could benefit west Texas farmers. According to Pabuayon, sesame seeds are commonly used for food consumption and other culinary uses. The seeds are high in fat and are a good source of protein. Sesame is a major source of cooking oil. The remaining parts of sesame, after oil extraction, are good sources of livestock feed. Sesame has uses in the biodiesel industry, and even in cosmetics. This means there are multiple markets for the tiny seeds.

“Provided that the market price of sesame can support current yields, the results are favorable for low-input sesame production in west Texas,” says Pabuayon. “However, the relatively low yields of sesame (per acre, compared to cotton and sorghum) suggest opportunities for additional genetic advancement. Currently, sesame varieties available for Texas are well-suited as an alternative crop for water-limited crop production systems.

###

This research was recently published in Crop Science. This work was funded by High Plains Underground Water Conservation District.

Media Contact
Rachel Leege
[email protected]

Related Journal Article

http://dx.doi.org/10.2135/cropsci2019.03.0143

Tags: Agricultural Production/EconomicsAgricultureBiodiversityBiomedical/Environmental/Chemical EngineeringClimate ChangeEcology/EnvironmentHydrology/Water ResourcesPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

New Lacewing Species Reveals Jurassic Diversity in China

New Lacewing Species Reveals Jurassic Diversity in China

August 23, 2025
Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

August 23, 2025

Ancient Skull Sheds Light on Plotopteridae Origins

August 23, 2025

Pollen, Karyotype, and Scent: Classifying Syringa Species

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Lacewing Species Reveals Jurassic Diversity in China

Skin Microbiome Changes in Multiple System Atrophy

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.