• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Exploring genetic ‘dark matter,’ researchers gain new insights into autism and stroke

Bioengineer by Bioengineer
July 24, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

With its elegant double helix and voluminous genetic script, DNA has become the of darling of nucleic acids. Yet, it is not all powerful. In order for DNA to realize its potential–for genes to become proteins–it must first be transcribed into RNA, a delicate molecule that requires intense care and guidance.

“Gene expression is a lot more complicated than turning on a switch,” says Robert B. Darnell, the Robert and Harriet Heilbrunn Professor. “There’s a whole layer of regulation that alters both the quality and quantity of a protein that’s produced from a gene. And much of it happens at the level of RNA.”

In the brain, RNA’s job as a gene tuner is vital to ensuring that the right proteins are made at the right time; and when this process go awry, the consequences can be serious. Darnell’s lab recently found that the brain’s response to stroke depends on the precise regulation of a subtype of RNA; and they have also learned that mutations affecting gene regulation underlie some cases of autism spectrum disorder.

Genome’s little helper

Whereas DNA is stuck inside a cell’s nucleus, RNA is fairly mobile. In the brain, so-called messenger RNAs can be found at the connections between neurons, called synapses, where they are translated into proteins that affect brain signaling. This process is regulated by another class of RNAs, known as miroRNAs, which can rapidly promote or suppress protein production in response to dynamic changes in the brain.

In a recent experiment described in Cell Reports, Darnell and his colleagues tracked microRNA activity in the mouse brain following a simulated stroke. Using a technique called crosslinking immunoprecipitation, or CLIP, they found that stroke prompts a dramatic reduction in a subset of microRNAs known as miR-29s. Typically, these molecules limit the production of two proteins called GLT-1 and aquaporin; and when miR-29 levels drop, the researchers found, these proteins are produced in higher-than-usual quantities.

GLT-1 is responsible for getting rid of extra glutamate, a chemical that is produced in abundance during stroke and can harm the brain if left unchecked. An uptick in production of this protein therefore seems to mitigate stroke-associated brain damage. Increased aquaporin, on the other hand, exacerbates tissue swelling, further threatening an already-imperiled brain. In short, a drop in miR-29s appears to simultaneously help and hinder stroke recovery. The good news is that a better understanding of how both of these processes work might guide the development of new and very precise medical tools.

“This research suggests potential drug targets for treating stroke,” says Darnell. “By artificially inducing more GLT-1 mRNA with a drug, for example, you could regulate the amount of glutamate that’s getting sucked up and reduce damage to the brain.”

Covert mutations

To understand what causes a person’s disease, researchers often look for mutations in genes–also known as the “coding” regions of DNA–that lead to the production of dysfunctional proteins. However, this general strategy works only for diseases that run in families and are driven by specific protein irregularities, which isn’t the case for some complex conditions. For example, though studies have identified many different coding mutations that contribute to the development of autism spectrum disorder (ASD) and epilepsy, together these mutations account for only about a quarter to a third of cases.

Researchers are therefore beginning to search for irregularities in the noncoding sections of DNA–regions that don’t directly code for proteins, but that make RNA whose job it is to regulate genes. Once thought of as “junk DNA,” these regions are now known to be critical in determining which proteins a cell makes, when it makes them, and in what quantities. And according to Darnell, analyzing noncoding DNA can be particularly useful in understanding diseases that don’t adhere to conventional heredity patterns.

“Some conditions have a genetic component, but they don’t come with simple family trees where you can predict the chance of a child having a disease based on the parents’ genetic makeup,” says Darnell. “So you need a different approach to figure out which types of mutations are underlying the disease.”

To find noncoding mutations associated with ASD, Darnell and his colleagues developed a new take on the family tree. Using a large genetic database, they first analyzed the DNA of 1,790 “microfamilies,” each consisting of a mother, a father, one child with ASD, and one without. They then applied a machine-learning algorithm, developed with colleagues at Princeton, to identify ways in which children with the condition were genetically different from the rest of their family members who were unaffected by the disorder.

Described in Nature Genetics, these findings suggest that by analyzing noncoding mutations, researchers may be able to better understand not only ASD but a variety of conditions, ranging from neurological disorders to heart disease.

“Noncoding DNA makes up over 98 percent of the genome, and it’s largely unexplored,” says Darnell. “We’re showing that this genetic dark matter can fill in our understanding of diseases that coding mutations can’t explain.”

###

Media Contact
Katherine Fenz
[email protected]

Related Journal Article

https://www.rockefeller.edu/news/26392-exploring-genetic-dark-matter-researchers-gain-new-insights-autism-stroke/
http://dx.doi.org/10.1038/s41588-019-0420-0

Tags: BiologyGenesGeneticsMedicine/HealthMolecular BiologyneurobiologyStroke
Share12Tweet7Share2ShareShareShare1

Related Posts

Youth Internet Addiction in Eastern Mediterranean: Social Anxiety’s Role

Youth Internet Addiction in Eastern Mediterranean: Social Anxiety’s Role

August 5, 2025
Smartphone Bans in Schools Lack Scientific Evidence

Smartphone Bans in Schools Lack Scientific Evidence

August 5, 2025

Over 150 Hospitals Nationwide Honored for Excellence in Comprehensive Cardiovascular Care

August 5, 2025

Pregnancy Risks from Chikungunya, Dengue, Zika in Brazil

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Youth Internet Addiction in Eastern Mediterranean: Social Anxiety’s Role

Carvedilol Boosts Paclitaxel Effect in Resistant Gastric Cancer

Blastocystis Infection Linked to Colorectal Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.