• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New research identifies gene that hides cancer cells from immunotherapy

Bioengineer by Bioengineer
July 18, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings in Developmental Cell show that expression of an early developmental gene prevents the immune system from identifying and attacking cancer cells

SEATTLE — July 18, 2019 — A team at Fred Hutchinson Cancer Research Center has identified a gene that could make immunotherapy treatments, specifically checkpoint inhibitors, work for a wider variety of cancer patients. The study, published today in Developmental Cell, found that when the DUX4 gene is expressed in cancer cells, it can prevent the cancer from being recognized and destroyed by the immune system.

The team, led by Drs. Robert Bradley and Stephen Tapscott, looked at the gene expression profiles of nearly 10,000 cancers from 33 different cancer types and discovered that DUX4, a gene mostly known for its link to a specific muscular dystrophy (facioscapulohumeral dystrophy, or FSHD), consistently presented itself in many different solid tumors, including cancers of the bladder, breast, lung, kidney and stomach. DUX4 prevented immune cells from recognizing the cancer cells, so that patients whose cancers expressed the gene were less likely to respond to immunotherapy. Because DUX4 is expressed in many cancers, blocking its activity might increase the success of immune checkpoint inhibitors.

“Immunotherapy can be incredibly powerful against previously untreatable cancers, but it isn’t effective yet for most patients,” said Bradley. “Understanding the mechanisms that prevent the immune system from identifying and attacking tumors is a first step toward finding cures for all cancer patients.”

Tapscott, who has previously studied the role of DUX4 in early development and in FSHD muscular dystrophy, notes the findings are an example of how the rapid, but regulated, growth in early development can be re-activated in cancers as rampant and unregulated cell growth. DUX4 is normally expressed in early development, when embryonic cells need to evade detection by the maternal immune system.

“This study suggests that cancer cells express DUX4 to hijack a normal early developmental program that can suppress anti-cancer immune activity,” said Tapscott.

Tapscott further notes there is no increased cancer risk in individuals with FSHD, which indicates the cancer cells are using DUX4 as a developmental tool to avoid the immune system, but not as a driver that causes cancer.

Bradley and Tapscott hope their work will eventually lead to the development of DUX4-targeted treatments that will enhance the success of immunotherapies for a broad range of cancers.

###

The National Institutes of Health (grant numbers: P01NS069539 and R01AR045203), Friends of FSH Research, Chris Carrino Foundation for FSHD, and Leukemia & Lymphoma Society funded this study. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Bradley, Tapscott, and co-authors Guo-Liang Chew and Amy Campbell are inventors on a provisional patent application submitted by Fred Hutch that covers DUX4 expression in cancers and response to immunotherapy.

At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch’s pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation’s first National Cancer Institute-funded cancer prevention research program, as well as the clinical coordinating center of the Women’s Health Initiative and the international headquarters of the HIV Vaccine Trials Network.

CONTACT

Tom Kim

206.667.6240

[email protected]

Media Contact
Tom Kim
[email protected]
http://dx.doi.org/10.1016/j.devcel.2019.06.011

Tags: BiologycancerCell BiologyDevelopmental/Reproductive BiologyGeneticsHealth CareMicrobiologyMolecular Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

Optimizing Tumor Regression Grading in Esophageal Cancer

Optimizing Tumor Regression Grading in Esophageal Cancer

August 21, 2025
AI Predicts miR-15a in Kidney Cancer

AI Predicts miR-15a in Kidney Cancer

August 21, 2025

Epigenetic Noise: The Overlooked Mechanism Driving Cellular Identity Changes

August 20, 2025

Three-Year Survival After Early Cervical Surgery

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SwRI Expands Horizons: New Office Launches in Warner Robins, Georgia, Marking First Location Outside Texas

Groundbreaking Study Uncovers Link Between Mitochondrial Vulnerability and Neurovascular Function in Neuropsychiatric Disorders

Innovative Research Paves the Way for Greener, Faster Metal Production

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.