• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Simulations fix the cracks in magnetic mirrors

Bioengineer by Bioengineer
July 18, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Computer simulations reveal that magnetic mirrors can be tweaked to confine plasma more effectively, by fine-tuning both the arrangements of their electromagnets, and the initial properties of the plasma itself

When ring-shaped electromagnets are set up in linear arrangements, they can produce magnetic fields resembling a tube with a cone at each end; a structure which repels charged particles entering one cone back along their path of approach. Referred to as ‘magnetic mirrors’, these devices have been known to be a relatively easy way to confine plasma since the 1950s, but they have also proven to be inherently leaky. In a study published in EPJ D, physicists led by Wen-Shan Duan at Northwest Normal University, and Lei Yang at the Chinese Academy of Sciences, both in Lanzhou, China, show that these plasma leaks can be minimised if specific conditions are met. Using computer simulations, the physicists analysed the dynamic properties of a high-energy proton plasma beam within a magnetic mirror and fine-tuned the simulation settings to maximise its confinement.

Firstly, Duan, Yang, and their colleagues varied the ‘mirror ratio’ – defined as the strongest magnetic field in the mirror (at the tip of each cone), divided by the weakest field (on the surface of the tube). They found that higher mirror ratios, which can be achieved using finely-tuned electromagnet configurations, directly corresponded to longer confinement times and lower loss rates. Secondly, the team found that the initial conditions of the plasma beam itself had an important effect, including its density, temperature, velocity, and trajectory. When each of these properties were optimised, the simulated high-energy beam moved in a tight spiral pattern within the mirror, ensuring maximum confinement.

The insights gathered by Duan and Yang’s team could solve a decades-old problem of low plasma confinement times and high loss rates in magnetic mirrors. This could make them ideal for intriguing new particle physics experiments, including the production and confinement of antihydrogen atoms and electron-positron plasmas, as well as the deceleration of high-energy antiprotons.

###

Reference

F. P. Wang, H. Zhang, X. Y. Zhao, Z. Z. Li, W. S. Duan, L. Yang (2019) Confinement of proton beam in a magnetic mirror, European Physical Journal D 73: 130, DOI: 10.1140/epjd/e2019-90587-0

Contact:

Sabine Lehr

Springer Physics Editorial

Tel: +49-6221-4487-8336

Email: [email protected]

Media Contact
Sabine Lehr
[email protected]
http://dx.doi.org/10.1140/epjd/e2019-90587-0

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.