• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Determining gene function will help understanding of processes of life

Bioengineer by Bioengineer
July 15, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of Kent have developed a new method of determining gene function in a breakthrough that could have major implications for our understanding of the processes of life.

A team at the University’s School of Biosciences developed a novel computational approach which enabled them to assign functions to genes which hitherto had unknown function.

One approach to improve understanding of the basic features and requirements of life is to generate organisms with a minimal genome, i.e. the smallest number of genes that enable life.

Dr Mark Wass, Professor Martin Michaelis and Magdalena Antczak studied the organism with the smallest genome generated so far, based on a bacterium (Mycoplasma mycoides) that is cultivated in a nutrient-rich environment. It contains 473 genes, nearly one-third (149) of which have an unknown function, illustrating the limitations of our current understanding of how life works.

The Kent researchers developed a novel computational approach which enabled them to assign functions to 66 of the genes of unknown function. They found that many of the encoded functions have a role in substance transport into and out of the cell.

Dr Wass said: ‘This seems to reflect the requirements of an organism with a minimal genome in a nutrient-rich environment. If nutrition is available in abundance, many genes performing metabolic functions are not needed, but transporters that enable nutrient transport into the cell and the excretion of (toxic) metabolites out of the cell become critical.

‘This indicates that there is not one minimal genome but that the nature of a minimal genome will always be shaped by the environment. Consequently, a minimal genome consists of a set of essential genes, which are indispensable for all forms of life, and a second set of facilitator genes, which enable life in a certain environment.’

The team say that their findings should pave the way to more focused research on the identification of essential and facilitator gene sets to advance the understanding of the fundamental processes of life.

###

The research, entitled Environmental conditions shape the nature of a minimal bacterial genome (M.Wass, M. Michaelis and M. Antczak, University of Kent) is published in the journal Nature Communications. See: http://dx.doi.org/10.1038/s41467-019-10837-2

Media Contact
Martin Herrema
[email protected]
http://dx.doi.org/10.1038/s41467-019-10837-2

Tags: BiologyCell BiologyGenesGeneticsMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.