• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

An entry to optically active oxazolidinones: The use of neutral phosphonium salt catalysts

Bioengineer by Bioengineer
July 12, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Shinshu University

Oxazolidinones are coveted in the field of medicine and pharmacology for their bioactive properties. There is hope that structurally different types of oxazolidinones can be building blocks for new drugs. With this research, Assistant Professor Yasunori Toda led a team of researchers at Shinshu University to use a neutral phosphonium salt catalyst for the oxazolidinone synthesis from glycidols and isocyanates. Although the conventional method by basic catalysis caused loss of enantiomeric excess in the reaction using optically pure glycidol, the neutral catalysis inhibited the undesired racemization to afford the product in high yields with high selectivities.

Assistant Professor Toda sat down with us for a brief interview about his research into oxazolidinones.

1) What is the aim of this study?

    The development of neutral catalysts. Now, we are focusing on the catalytic ability of the molecule, which is one of the phosphonium salts, called?tetraarylphosphonium salts.

2) What is the most important message from the paper that you want readers to understand and remember?

    The most important message to remember is that the iodide ion of the catalyst works as a hydrogen-bond acceptor.

3) What was the most challenging part and exciting aspect of the research?

    Making a new and original molecule is a fun part of organic chemistry, but which is always very challenging, because nobody knows how the molecule works.

4) What’s the next step?

    We are curious of carbon dioxide fixation. The use of carbon dioxide instead of isocyanates can be interesting. We also need to understand the precise mechanism of the reaction by computational studies.

5) What is your ultimate goal?

    My goal is the development of my name reaction like Toda reaction, which would be my pleasure as a chemist.

With the increase of drug resistant infections, new synthetic approaches to potential drug targets are very welcome. For further information please read the article on Chemical Communications.

###

Media Contact
Hitomi Thompson
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/c9cc01983a

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.