• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Repair of aged tissue can be enhanced by inhibiting signals from neighbouring cells

Bioengineer by Bioengineer
July 10, 2019
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nalle Pentinmikko

Researchers at the University of Helsinki have discovered how regenerative capacity of intestinal epithelium declines when we age. Targeting of an enzyme that inhibits stem cell maintaining signaling rejuvenates the regenerative potential of an aged intestine. This finding may open ways to alleviate age-related gastrointestinal problems, reduce side-effects of cancer treatments, and reduce healthcare costs in the ageing society by promoting recovery.

“This study highlights the importance of cellular interactions. Alterations inside one cell resulted in secretion of an aging factor that can be targeted with drugs, providing multiple attractive points for interventions”, says the principal investigator Pekka Katajisto, Associate Professor at the University of Helsinki and Karolinska Institutet.

The age-induced reduction in tissue renewal makes dosing of many common drugs challenging. Targeting of inhibitor called Notum may provide a new way to increase the therapeutic window and to promote recovery in societies with the aging population. Researchers believe that in addition to direct targeting of Notum, lifestyle factors such as diet may also provide means to reduce Notum, and thus improve tissue renewal and repair.

Using organoid culture methods, researchers understood that poor function of tissue repairing stem cells in old intestine was due to aberrant signals from the neighboring cells, known as Paneth cells.

“Modern techniques allowed us to examine tissue maintenance at a single cell level, and revealed which cell types contribute to the decline in tissue function. We were surprised to find that even young stem cells lost their capacity to renew tissue when placed next to old neighbors”, says the lead author, PhD candidate Nalle Pentinmikko from the University of Helsinki.

Normally intestinal epithelium is renewed by stem cells that rely on activity of Wnt-signaling pathway. Surrounding cells produce molecules that activate this pathway. The study shows that during ageing, Paneth cells begin to express a secreted Wnt-inhibitor called Notum. Notum enzymatically inactivates Wnt-ligands in the stem cell niche, decreasing regenerative potential of intestinal stem cells. However, pharmacologic inhibition of Notum rejuvenated stem cell activity and promoted the recovery of old animals after treatment with a commonly used chemotherapeutic drug with severe side-effects in the gut.

###

Media Contact
Pekka Katajisto
[email protected]

Original Source

https://www.helsinki.fi/en/news/life-science-news/repair-of-aged-tissue-can-be-enhanced-by-inhibiting-signals-from-neighbouring-cells

Related Journal Article

http://dx.doi.org/10.1038/s41586-019-1383-0

Tags: AgingBiologycancerCell BiologyInternal Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Bariatric Surgery’s Impact on Circulating S100A9

Bariatric Surgery’s Impact on Circulating S100A9

July 28, 2025
blank

Agomelatine Restores Mitochondria, Rescues Oocyte Meiosis

July 28, 2025

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bariatric Surgery’s Impact on Circulating S100A9

Engineering Receptors to Enhance Flagellin Detection

Hydrogels in Food: Advances, Challenges, and Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.