• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New epidemic forecast model could save precious resources

Bioengineer by Bioengineer
July 2, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study authored by a Texas A&M industrial systems and engineering researcher found that failing to factor in how a population will react to news of an outbreak hinders resource allocation

IMAGE

Credit: Texas A&M Engineering

When governments and institutions deploy epidemic forecast models when facing an outbreak, they sometimes fail to factor in human behavior and over-allocate precious resources as a result. Thanks to new research authored by a Texas A&M University engineering professor, that may no longer be the case.

Dr. Ceyhun Eksin, lead author and assistant professor in the Texas A&M Department of Industrial & Systems Engineering and his colleagues at the University of California Santa Barbara and the Georgia Institute of Technology have published an article in the journal Epidemics that focuses on incorporating behavior change criteria into disease outbreak models.

Adding these criteria will allow professionals and communities to mobilize adequate resources during epidemic outbreaks and reduce public mistrust caused by the overallocation of resources.

“Our goal was to adapt these findings to forecast the disease trajectory, even if the initial information the model received was inaccurate,” Eksin said. “The findings show there is value to incorporating a behavior aspect into forecast models.”

A modified SIR model

The current models used to predict the impact of an outbreak, called simple susceptible-infected-recovered (SIR) models, do not take the changes in an individual’s behavior into account and can over predict the number of infected individuals during an outbreak. This can lead to an overuse of resources.

The research team hypothesized that individuals would take action during an outbreak to reduce their exposure by avoiding infected individuals and as a result would change the number of individuals infected during the outbreak. To put this idea to the test, the researchers created a modified SIR model that included the ability to pick up a change in an individual’s behavior.

By testing their modified model against the simple SIR model, Eksin and his colleagues were able to show that the modified model more accurately predicted outbreak numbers. By inputting past outbreak data into the modified models, they were able to predict the number of infected individuals more accurately.

Putting resources to better use

Predicting the number of individuals who will become infected during an outbreak is valuable to determine how to use limited resources, and interdisciplinary research can help understand the link between a public health response and behavior change. If a community is better able to plan for an outbreak, without over-preparing, it can save resources and reduce the possibility of losing public support during future outbreaks.

###

Media Contact
Amy Halbert
[email protected]

Original Source

https://today.tamu.edu/2019/07/02/new-epidemic-forecast-model-could-save-precious-resources/

Tags: Disease in the Developing WorldEpidemiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Parity and Lactation Trigger T Cell Breast Cancer Protection

October 20, 2025

Nurses’ Views on AI: Benefits, Challenges, Ethics

October 20, 2025

Prostate Cancer Landscapes Reveal Prognostic Biomarkers

October 20, 2025

Mosquito Salivary Sialokinin Eases Chikungunya Inflammation

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1267 shares
    Share 506 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    300 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    128 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parity and Lactation Trigger T Cell Breast Cancer Protection

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

Groundbreaking Virtual Reality Method Pioneered for Enhanced Stroke Rehabilitation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.