• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

CU Anschutz researchers win grant to commercialize miniature microscope

Bioengineer by Bioengineer
July 2, 2019
in Science
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The tiny microscope allows scientists to peer inside the living brain

AURORA, Colo. (July 2, 2019) – A team of researchers from the University of Colorado Anschutz Medical Campus has received a grant to commercialize a miniature microscope that fits on the head of a mouse and can peer deeply inside the living brain.

The microscope, known as the 2P-FCM, uses an electrowetting lens mounted on the head of a freely moving mouse where a high-powered, fiber optic light can actually view and control neural activity as it happens. The lens is liquid and can change shape when electricity is applied.

“We can image deep into the brain which makes it very attractive to a lot of neuroscience researchers,” said Emily Gibson, PhD, assistant professor of bioengineering at CU Anschutz who helped create the microscope. The initial demonstration of the 2P-FCM was published in Scientific Reports (Ozbay et al., 2018).

Gibson and her colleague Diego Restrepo, PhD, professor of cell and developmental biology at the University of Colorado School of Medicine, along with Karl Kilborn, co-president of 3i (Intelligent Imaging Innovations, Inc.) in Denver, won the $394,260 Small Business Innovation Research (SBIR) grant.

The microscope was first deployed to the University of Paris. Based on that success, it will next be used at New York University and Duke University.

The company 3i, founded by Karl Kilborn, along with Colin Monks, a former PhD student of CU Anschutz, and Abraham Kupfer, a former investigator at National Jewish, will produce the microscope. The company’s manufacturing efforts will be guided by Baris Ozbay, PhD, who helped create the prototype while working in Gibson’s lab and now works at 3i.

In 2016, Restrepo and Gibson along with Juliet Gopinath, PhD, associate professor in electrical, computer and energy engineering at CU Boulder and Victor Bright, PhD, professor of mechanical engineering at CU Boulder won a $2 million grant, spread over three years, from the National Institutes of Health (NIH) and the National Institute of Neurological Disorders and Stroke (NINDS). It was part of the NIH’s new BRAIN initiative aimed at revolutionizing the understanding of the human brain.

The money was partly used to optimize the microscope and deploy it in different neuroscience labs.

The device represents a breakthrough in the way scientists can observe brain activity. The microscope is attached to a thin fiber optic cable and mounted on a mouse’s head, allowing it to wander freely. Scientists can then observe complex neural processes within the brain.

“This can also be used to monitor brain responses to social and behavioral interactions,” Restrepo said. “To do that, you need an animal that is moving around and interacting with its environment.”

Kilborn, 3i co-president, said the goal of the BRAIN initiative was to ensure that new technologies developed academically made their way into as many laboratories as possible.

“This SBIR will help 3i disseminate the pioneering work done at CU Anschutz in the laboratories of Emily Gibson and Diego Restrepo, along with collaborators at CU Boulder in the laboratories of Victor Bright and Juliet Gopinath, which has also been funded, in part, by the BRAIN Initiative,” he said. We are excited by the experimental potential of this new technology and believe the grant represents a positive example of how academia and industry can work together to advance research in neuroscience.”

The microscope will allow scientists to investigate a wide range of subjects.

Some of those involved with the project are studying the neural basis of vocal learning in songbirds, decision-making in non-human primates and the neural basis of social bonding among prairie voles.

“This microscope has been getting a lot of attention,” Gibson said. “The idea is to turn it into an easy-to-use commercial product and make it available to labs around the world. For me, that is what is most rewarding about this work.”

###

About the University of Colorado Anschutz Medical Campus

The University of Colorado Anschutz Medical Campus is a world-class medical destination at the forefront of transformative science, medicine, education, and healthcare. The campus encompasses the University of Colorado health professional schools, more than 60 centers and institutes, and two nationally ranked hospitals that treat more than 2 million adult and pediatric patients each year. Innovative, interconnected and highly collaborative, together we deliver life-changing treatments, patient care, professional training, and conduct world-renowned research powered by more than $500 million in research awards. For more information, visit https://www.cuanschutz.edu.

The Bioengineering department at the University of Colorado Anschutz Medical Campus performs interdisciplinary research between engineers and biomedical researchers and clinicians. It is the only program in the state of Colorado to offer undergraduate and graduate level degrees in bioengineering, focused on catalyzing technology development to cure and prevent disease. As the only engineering department located on the Anschutz Medical Campus, it offers students a unique opportunity to partner with clinicians and biotechnology entrepreneurs to bring products to market efficiently and quickly. Faculty and students from the department have started up 10 companies and several products are now in clinical use. More information is available at http://www.ucdenver.edu/bioengineering

Media Contact
David Kelly
[email protected]

Tags: BehaviorElectrical Engineering/ElectronicsGrants/FundingHealth CareMental HealthNanotechnology/MicromachinesneurobiologyPhysiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Career Adaptability Patterns in Chinese Cardiovascular Nurses

Once-Weekly Insulin Icodec: Efficacy and Safety in India

Hydrogen Sulfide Shields Spinal Cord via Rac1 Persulfidation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.