• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mapping and measuring proteins on the surfaces of endoplasmic reticulum (ER) in cells

Bioengineer by Bioengineer
June 19, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kanazawa University

Sigma receptors are proteins found on mainly the surface of endoplasmic reticulum (ER) in certain cells. Sigma-1 and sigma-2 are the two main classes of these receptors. The sigma-1 receptor is involved neurological disorders and certain types of cancer. To understand better how the receptor is involved in disease and whether drugs developed to target it are working, it is important to be able to accurately trace the sigma-1 receptor. Researchers at Kanazawa University have developed a probe, which can identify and latch onto the sigma-1 receptor.

The research team led by Kazuma Ogawa had previously developed molecules with such binding potential. However, upon detailed analysis of the sigma-1 receptor structure, they realized that extending the length of these molecules would increase their binding affinity further. The team therefore created molecules with varying lengths and found one probe that bound to the receptor exceptionally well. For measuring and mapping the sigma receptors by nuclear imaging, radiolabeled iodine was introduced into the probe. The structure created subsequently bound to both sigma-1 and sigma-2 receptors.

Since sigma-1 and sigma-2 receptors are involved in prostate cancer, the team then tested the effects of their newly created molecular probe on prostate cancer cells. These cells have sigma receptors and thus any probe with a high affinity will attach to them and enter the cell. As expected, the probe signal from within the cell was high. When haloperidol–a drug specific to the sigma-1 receptor–was added to the mix this signal dropped, suggesting a competition between the two.

To finally assess the affinity of the probe for different tissues within the body, mice with prostatic tumors were used. While the probe easily entered and stayed within the tumors, its presence in the muscles and blood was less. The probe was thus highly specific for tissues with the presence of sigma receptors.

This study reports a sophisticated probe that binds to sigma-1 receptors better than previous probes developed. This coupled with its ability to escape non-specific tissues is a promising step forward in studying changes induced in the sigma-1 receptor in various disorders. The probe can also be used when developing drugs against the sigma-1 receptor to compare the binding affinities of such drugs. “These results provide useful information for developing sigma-1 receptor imaging probes”, conclude the researchers.

###

Media Contact
Tomoya Sato
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.bmc.2019.03.054

Tags: cancerMedicine/HealthNeurochemistryPharmaceutical Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Neural Signatures of Turn-Freezing in Parkinson’s Disease

October 23, 2025

New Training Method Boosts Nursing Students’ Fall Prevention

October 23, 2025

Diabetes and Erectile Dysfunction: A Ugandan Study

October 23, 2025

Novel Sulfone-Linked 1,2,4-Oxadiazole Derivatives: Design and Activity

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    159 shares
    Share 64 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TU Graz Explores Preservation of Endangered Cultural Heritage in the Western Himalayas

SARS-CoV-2 mRNA Vaccines Boost Tumor Immunotherapy

Global Coral Phylogeny Unveils Ancient Resilience, Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.