• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Calcium phosphate to help advance bone tissue regeneration

Bioengineer by Bioengineer
June 18, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fadis Murzakhanov, graduate student of the Institute of Physics, elaborates on his research

Mr. Murzakhanov’s master thesis is dedicated to magnetic resonance-assisted observations of hydroxyapatite and tricalcium phosphate. They are both used in bone implant technology, but, as with any artificial materials, there is a problem of biocompatibility.

The gist of the young scientist’s work is to insert various ions, such as iron, copper, manganese, or aluminum into hydroxyapatite and tricalcium phosphate and observe resulting changes.

“We are currently concentrated on studying divalent manganese,” he says. “Previous works on the spectroscopy of hydroxyapatite and tricalcium phosphate with divalent manganese have only used stationary regime of 9.6 GHz. The results have not been very informative. In our research, we utilize impulse high-frequency electron paramagnetic resonance and electron nuclear double resonance, which gives unique information about the additive center.

“We’ve been able to find and locate manganese in crystalline structures of hydroxyapatite and tricalcium phosphate with very low concentrations. From a medical standpoint, this is very important, because the positioning of manganese can lend biomaterials very differing properties.”

Murzakhanov’s supervisor, Associate Professor Marat Gafurov, adds, “Calcium phosphates are in high demand in biology and materials science. There are also ideas to use them as a catalyst substrate in petroleum chemistry. Pure calcium phosphates are variously doped with metal ions to improve their physical and medical properties. The next – and more complicated – step is combined doping, meaning the introduction of two or more cations or a cation and an anion. This is a new area of science and is of huge interest to our colleagues in Russia and Belarus who work on gels and ceramic materials for medical applications.”

###

Media Contact
Yury Nurmeev
[email protected]
https://kpfu.ru/eng/news-eng/calcium-phosphate-implant-technology.html

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesElectromagnetics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.