• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Gold adds the shine of reversible assembly to protein cages

Bioengineer by Bioengineer
June 18, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team including researchers from the University of Tsukuba reports the gold led reversible self-assembly of 3D cages from engineered proteins

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Protein cages–capsule-like structures made up of numerous protein molecules–perform roles in nature that have inspired their application in areas such as drug delivery. Their controlled assembly is therefore of particular research interest; however, the stimuli responsive disassembly of protein cages has not yet been reported. Now, an international research team has reported gold-directed reversible assembly of 3D protein cages. Their findings are published in Nature Research.

Reported methods for preparing protein cages based on protein-protein interactions, such as hydrogen bonding and hydrophobic interactions, can result in stable cages; however, such assemblies are static and once formed do not offer any means of smart control. In contrast, assembly that uses metal ions to facilitate interactions between proteins provides a release mechanism.

Although metal-driven assembly of proteins has been reported, examples of 3D cage structures prepared this way are rare. The researchers engineered a ring-shaped protein known as TRAP (trp RNA-binding attenuating protein) so that it exhibited equally spaced thiol groups of cysteine moieties. Adding a source of gold ions to the proteins in solution led to the assembly of 3D protein cages, based on gold-sulfur interactions, within minutes.

“By modifying the protein building blocks we have been able to direct the assembly of cages in a way that also provides us with control of their stability,” study author Kenji Iwasaki explains. “The proteins assembled within minutes of introducing gold into the system and cryo-electron microscopy allowed us to clearly see the formed structures, which have a diameter of approximately 22 nm.”

Detailed analysis of the shape of the protein cages revealed that the structures are made up of 24 rings arranged to give six square apertures. This arrangement is known as a snub cube, an Archimedean solid that the researchers believe has not previously been observed in nature.

The cage structures were shown to be stable over a range of temperatures, including at 95 °C for multiple hours, and were also found to be robust in the presence of a range of chemicals capable of disrupting hydrogen-bonded structures. However, in the presence of reducing agents, including biologically relevant anti-oxidants present in the body, the cages could be disassembled.

“The reversible control of cage stability is an exciting feature in terms of providing smart properties for dynamic cargo delivery applications,” Professor Iwasaki explains. “However, beyond these practical features, the observation of an unprecedented structural architecture that has not, to our knowledge, been observed in nature and has parallels in Islamic artwork, has provided an interesting dimension to our findings.”

###

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-019-1185-4

Tags: BiochemistryChemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New 18F-labeled Compound Targets COX-2 Imaging

New Study Highlights Positive Impact of Diet and Exercise on Alcohol-Induced Liver Damage

CytoSorb® Enhanced Hemadsorption in Cardiac Surgery Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.