• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Bacteria such as E. coli detected in minutes by new technology from Warwick University

Bioengineer by Bioengineer
June 12, 2019
in Science
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

  • Scientists at the University of Warwick have shown that bioelectrical signals from bacteria can be used to rapidly determine if they are alive or dead.
  • The findings offer a new technology which detects live bacteria in minutes instead of waiting for lab-test results which can take days.
  • When zapped with an electrical field, live bacteria absorb dye molecules, causing the cells to light up and allowing them to be counted easily.
  • This rapid technique can detect antibiotic-resistant bacteria.

A discovery by researchers at the School of Life Sciences at the University of Warwick offers a new technology for detecting bacteria in minutes by ‘zapping’ the bacteria with electricity.

Testing clinical samples or commercial products for bacterial contamination typically takes days. During this time, they can cause significant damage; many infections can become life threatening very quickly if not identified and treated with appropriate antibiotics.

For example, 8% of people with severe blood infection sepsis will die for every hour of delay in proper treatment. More routine problems like urinary tract infections are difficult to diagnose and some people cannot get a clear answer about their symptoms due to difficulties with detecting low-level infections. Studies have found 20-30% of urinary tract infections are missed by dipstick tests used for detecting bacteria in the urine.

Scientists at the University of Warwick have discovered that healthy bacteria cells and cells inhibited by antibiotics or UV light showed completely different electric reactions.

They made this discovery by combining biological experiments, engineering and mathematical modelling. Published in Proceedings of the National Academy of Sciences of the USA (PNAS), these findings could lead to the development of medical devices which can rapidly detect live bacterial cells, evaluate the effects of antibiotics on growing bacteria colonies, or which could identify different types of bacteria and reveal antibiotic-resistant bacteria.

The researchers have an ambitious plan to deliver the technology to market to maximise social good and have founded a start-up company Cytecom to commercialise the idea. The company has been awarded a grant from Innovate UK, the national innovation funding agency. This governmental support accelerates the process and the devices will be available to researchers and businesses in the very near future.

Dr Munehiro Asally, Assistant Professor at the University of Warwick comments:

“It is such an exciting time to work on bio-electricity of bacterial cells. This work demonstrates that bacterial electricity can lead to societally important technology, while at the same time gaining fundamental insights into our basic understanding of cells. The tool we developed can offer more opportunities by allowing experiments which were not possible to perform before.”

Dr James Stratford, from the School of Life Sciences and Warwick spinout company Cytecom comments:

“The system we have created can produce results which are similar to the plate counts used in medical and industrial testing but about 20x faster. This could save many people’s lives and also benefit the economy by detecting contamination in manufacturing processes.”

Dr Yoshikatsu Hayashi, from the University of Reading, comments:

“Using the widely used mathematical model in Neuroscience, we revealed a common mechanism of excitable cells, neuron and bacteria cells, and the extended neuronal model could explain two distinct electric reactions of healthy and unhealthy bacteria cells. Surprisingly, a single parameter representing the degree of non-equilibrium across the membrane was sufficient to explain the distinct responses of the cells. This is an important step towards understanding the origin of electrical signalling.”

###

NOTES TO EDITORS

High-res images credit to the University of Warwick are available at:

https://warwick.ac.uk/services/communications/medialibrary/images/june2019/dsc_0195.jpg

https://warwick.ac.uk/services/communications/medialibrary/images/june2019/dsc_0359.jpg

https://warwick.ac.uk/services/communications/medialibrary/images/june2019/dsc_0383.jpg

Full list of authors:

James P Stratford

Conor LA Edwards

Manjari J Ghanshyam

Dmitry Malyshev

Marco A Delise

Yoshikatsu Hayashi

Munehiro Asally

Paper available to view at:

https://www.pnas.org/content/116/19/9552

References:

Sepsis reference: https://bmjopenquality.bmj.com/content/2/2/u202548.w1443

Urine dipstick reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408713/

For further information please contact:

Alice Scott

Media Relations Manager – Science

University of Warwick

E-mail: press@warwick.ac.uk

Media Contact
Sheila Kiggins
press@warwick.ac.uk

Related Journal Article

https://warwick.ac.uk/newsandevents/pressreleases/bacteria_such_as
http://dx.doi.org/10.1073/pnas.1901788116

Tags: BacteriologyBiomedical/Environmental/Chemical EngineeringCell BiologyDiagnosticsMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.