• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers reveal key role of pressure-sensing protein in lung edema

Bioengineer by Bioengineer
June 11, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Illinois at Chicago describe for the first time the role of a unique, pressure-sensing protein in the development of lung edema — a condition in which chronic high vascular pressure in the lungs causes fluid from the bloodstream to enter the air spaces of the lungs.

The results, which are published in the Proceedings of the National Academy of Sciences, suggest that suppressing the activity of the protein could be a new approach to treating lung edema.

Lung edema can have a variety of causes, including heart failure. Certain types of heart failure — where the heart is chronically unable to pump blood efficiently — can cause increased pressure in the blood vessels in the lungs. The high pressure can result in capillary stress failure, where connections between the individual cells that make up the walls of the capillary blood vessels become looser, allowing fluid from the bloodstream to enter the air spaces in the lungs.

Yulia Komarova, UIC associate professor of pharmacology, and Asrar Malik, Schweppe Family Distinguished Professor and head of pharmacology in the UIC College of Medicine, have been studying adherens junctions — the structures that bind together the cells that make up blood vessels. Adherens junctions act like adjustable nuts and bolts that can be tightened or loosened to modulate the flow of fluids and blood cells into and out of the bloodstream, such as immune cells that travel in the blood to get to areas where they are needed.

Komarova and colleagues wanted to see if a protein called piezo 1 — which is found in many cell types, including in the endothelial cells that line the blood vessels, and that can sense mechanical pressure — was involved in triggering adherens junctions to loosen up under conditions of high fluid pressure in the lungs.

The researchers engineered mice where piezo 1 was deleted in the adult animal in the endothelial cells. They then elevated the pressure in blood vessels in the lungs in order to mimic the effects of heart failure. In mice where piezo 1 was deleted in the endothelial cells, minimal fluid was seen entering the lungs, while in mice that had the piezo 1 protein, the lungs filled with fluid as blood pressure increased.

In a separate experiment, Komarova and colleagues used a mouse model where the adherens junctions were artificially reinforced in endothelial cells to keep the connections between individual cells lining the blood vessel cells tight. In these mice, no fluid was seen to enter the lungs when high pressures were induced in the animals even when they had the piezo 1 protein.

“Our experiments suggest that by either blocking the activity of piezo 1 or by bolstering the adherens junctions we can prevent fluid from entering the lungs,” Komarova said. “Small drug molecules that achieve these goals could represent novel therapeutic approaches to treat lung edema associated with heart failure.”

###

Emily Friedrich, Zhigang Hong, Shiqin Xiong, Ming Zhong, Anke Di, Jalees Rehman are co-authors on the paper.

This research was supported by grants T32HL007829 and R01HL045638 from the National Institutes of Health.

Media Contact
Sharon Parmet
[email protected]
https://today.uic.edu/researchers-reveal-key-role-of-pressure-sensing-protein-in-lung-edema

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.