• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Using facial recognition technology to continuously monitor patient safety in the ICU

Bioengineer by Bioengineer
June 2, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of Japanese scientists has used facial recognition technology to develop an automated system that can predict when patients in the intensive care unit (ICU) are at high risk of unsafe behaviour such as accidentally removing their breathing tube, with moderate (75%) accuracy.

The new research, being presented at this year’s Euroanaesthesia congress (the annual meeting of the European Society of Anaesthesiology) in Vienna, Austria (1-3 June), suggests that the automated risk detection tool has the potential as a continuous monitor of patient’s safety and could remove some of the limitations associated with limited staff capacity that make it difficult to continuously observe critically-ill patients at the bedside.

“Using images we had taken of a patient’s face and eyes we were able to train computer systems to recognise high-risk arm movement”, says Dr Akane Sato from Yokohama City University Hospital, Japan who led the research.

“We were surprised about the high degree of accuracy that we achieved, which shows that this new technology has the potential to be a useful tool for improving patient safety, and is the first step for a smart ICU which is planned in our hospital.”

Critically ill patients are routinely sedated in the ICU to prevent pain and anxiety, permit invasive procedures, and improve patient safety. Nevertheless, providing patients with an optimal level of sedation is challenging. Patients who are inadequately sedated are more likely to display high-risk behaviour such as accidentally removing invasive devices.

The study included 24 postoperative patients (average age 67 years) who were admitted to ICU in Yokohama City University Hospital between June and October 2018.

The proof-of-concept model was created using pictures taken by a camera mounted on the ceiling above patients’ beds. Around 300 hours of data were analysed to find daytime images of patients facing the camera in a good body position that showed their face and eyes clearly.

In total, 99 images were subject to machine learning–an algorithm that can analyse specific images based on input data, in a process that resembles the way a human brain learns new information. Ultimately, the model was able to alert against high-risk behaviour, especially around the subject’s face with high accuracy.

“Various situations can put patients at risk, so our next step is to include additional high-risk situations in our analysis, and to develop an alert function to warn healthcare professionals of risky behaviour. Our end goal is to combine various sensing data such as vital signs with our images to develop a fully automated risk prediction system”, says Dr Sato.

The authors note several limitations including that more images of patients in different positions are needed to improve the generalisability of the tool in real life. They also note that monitoring of the patient’s consciousness may improve the accuracy in distinguishing between high-risk behaviour and voluntary movement.

###

Media Contact
Dr Akane Sato
[email protected]

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Unlocking Brain Lipids: New Neurodegenerative Atlas

September 22, 2025

Bottom-Up Septal Circuit Controls Anticipatory Drinking

September 22, 2025

ORESTES Study: COPD Treatment Outcomes in Spain

September 22, 2025

Psychological Distress Following Heart Attacks Linked to Increased Risk of Future Cardiac Conditions

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Brain Lipids: New Neurodegenerative Atlas

Bottom-Up Septal Circuit Controls Anticipatory Drinking

ORESTES Study: COPD Treatment Outcomes in Spain

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.