• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

An innovative active platform for wireless damage monitoring of concrete structures

Bioengineer by Bioengineer
November 14, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr. Costas Providakis, Bentham Science Publishers

Structural Health Monitoring (SHM) is playing an important role in evaluationprocess of structural integrity of concrete structures mainly because much of the expected construction demands will have to be accommodated on existing concrete structures with widespread signs of deterioration.

Electromechanical Impedance (EMI) sensing approach has been proven that could be an effective alternative experimental approach for the damage detection of concrete structures even at very early-age stages. The wireless monitoring system proposed in the present work, denoted as Wireless impedance or Admittance Monitoring System (WiAMS), retains the benefits of low-budgeted EMI-based monitoring system but is not limited by the data acquisition device sampling rate in conventional EMI monitoring systems. This is achieved by utilizing a credit card-sized Raspberry Pi single-board computer which is capable of transferring data without a base station, can perform processing-hungry operations like video streaming by just simply adding the WiAMS device to the home network and perform SHM.

Moreover, the use of the Raspberry Pi expands the available hardware interfaces making the sensing device to be ready not only as an SHM control unit, but also as a base station for many other useful sensing platforms like motion with video, audio or environmental sensors.

WiAMS, as a whole, additionally offers extensive features such as remote control, high processing power, wireless data upload to an SQL database, email notifications, scheduled and iterative impedance (or admittance) measurements and frequency spans from 5kHz to 300 kHz with resolution down to 1 Hz.

The proposed WiAMS is successfully applied on various concrete specimens detecting damage even in very early-age stages by establishing a damage identification index based on extreme value statistics.

###

For More information about the article, please visit http://benthamscience.com/journals/current-smart-materials/article/145156/

Reference: Providakis, C.; et al (2016). An Innovative Active Sensing Platform for Wireless Damage Monitoring of Concrete Structures. Current Smart Materials., DOI: 10.2174/2405465801666160830155120

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.